Reinforced concrete bridge pier ductility analysis for different levels of detailing

  • Rachel Wysard Soares Texas A&M University
  • Silvio de Souza Lima Escola Politécnica da UFRJ
  • Sergio Hampshire de Carvalho Santos Escola Politécnica da UFRJ


The structural design under seismic loading has been for many years based on force methods to consider the effects of energy dissipation and elastoplastic behavior. Currently, displacement-based methods are being developed to take into account elastoplastic behavior. These methods use moment-curvature relationships to determine the ductility capacity of a structural element, which is the deformation capacity of the element before its collapse. The greater the plastic displacement or rotation a structural member can achieve before it collapses, the more energy it is capable of dissipating. This plastic displacement or rotation capacity of a member is known as the member ductility, which for reinforced concrete members is directly related to efficient concrete confinement. This study investigates at which extents transverse reinforcement detailing influences reinforced concrete column ductility. For this, a bridge located in Ecuador is modeled and analyzed, and its ductility evaluated considering several cases of axial loading and concrete confinement levels. After the performed displacement-based analyses, it is verified whether the response modification factor defined by AASHTO is adequate in the analyzed case.

Author Biographies

Rachel Wysard Soares, Texas A&M University
Zachry Department of Civil Engineering
Silvio de Souza Lima, Escola Politécnica da UFRJ
Departamento de Estruturas
Sergio Hampshire de Carvalho Santos, Escola Politécnica da UFRJ
Departamento de Estruturas