
Nondestructive Testing (NDT) techniques are useful tools for analyzing reinforced concrete (RC) structures. The use of Ultrasonic Pulse Velocity 
(UPV) measurements enables monitoring changes in some critical characteristics of concrete over the service life of a structure. Nonetheless, the 
current techniques for UPV data analysis are largely based on the sensitivity of the professionals who apply these tests. For accurate diagnosis it is 
necessary to consider the different factors and conditions that can affect the results. In order to properly control and inspect RC facilities it is essential 
to develop appropriate strategies to make the task of data interpretation easier and more accurate. This study is based on the idea that using Artificial 
Neural Networks (ANNs) is a feasible way to generate workable estimation models correlating concrete characteristics, density and compressive 
strength. The study shows that this goal is achievable and indicates that neural models perform better than traditional statistical models. 
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Os ensaios não destrutivos servem como uma importante ferramenta para a análise de estruturas de concreto armado. A utilização de ensaios de 
velocidade de propagação do pulso ultra-sônico (VPU) permite realizar um acompanhamento das características do material ao longo de sua vida 
útil. No entanto, as técnicas atuais para análise dos resultados coletados são, em grande parte, baseadas na sensibilidade dos profissionais que 
as aplicam. Para facilitar o controle e inspeção de estruturas de concreto armado é fundamental desenvolver estratégias para tornar esta análise 
mais simples e precisa. Este trabalho se baseou na hipótese de que a aplicação de Redes Neurais Artificiais (RNAs) pode gerar modelos de relac-
ionamento úteis e acurados entre as características do concreto, sua compacidade e sua resistência à compressão. Os resultados indicam que as 
RNAs podem ser usadas para gerar métodos numéricos robustos e flexíveis para estimativa da resistência à compressão a partir de dados de VPU.

Palavras-chave: redes neurais artificiais, ensaios não destrutivos, estimativa da resistência do concreto. 
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1. Introduction

Concrete is an essential material in civil construction due to its 
molding and strength characteristics. It is widely used in developed 
countries and in most developing countries, including Brazil. The 
main current issue in concrete application is adapting design and 
its execution in order to comply with the increasing performance 
requirements and to ensure reasonable longevity. The design and 
building of concrete structures must ensure their safety, stability, 
and use capability during service time [1].
According to CEB-FIP Model Code 1990 [2], concrete structures 
should be designed, constructed and operated in such way that, 
under the expected environmental influence, they maintain their 
safety, serviceability and acceptable appearance during an explicit 
or implicit time without requiring unforeseen high costs for mainte-
nance and repair. The follow up of the evolution of strength in time, 
determining reliable estimates of the values effectively presented 
in the actual structure is, therefore, an essential requirement to as-
sess the adequacy of a work.
It is important to determine the best way to estimate the strength 
of an existing concrete structure. As mentioned by Isaia [3]: “Ev-
ery prediction aiming at estimating the service life of a concrete 
structure should be based on the mathematical modeling of the 
involved phenomena and properties as precisely as possible to 
produce a reliable result.” This requires reflection on which is the 
best way to effectively control the strength of concrete structures. 
Test samples modeled during the process of concrete casting of 
structures are commonly used for this purpose. 
However, the exposure and cure of test samples are usually very 
different from those to which actual structures are submitted, with di-
rect effects on their strength. An interesting possibility to circumvent 
this problem is to estimate concrete strength using nondestructive 
testing methods (NDT) applied on the actual structure. Among the 
available nondestructive test, ultrasonic pulse velocity test (UPV) 
presents several advantages, as it is not expensive, easy, and fast.
The challenge consists in establishing reliable relationships be-
tween strength to compressive stresses and UPV test results. The 
statistical methods used in traditional modeling are not capable 
encompass the entire complexity of those relationships, which are 
influenced by many factors. The use of artificial intelligence tools, 
such as Artificial Neural Networks (ANNs) allows handling poorly 
structured problems, allowing more consistent modeling. This con-
sisted of the starting point of the conception of the present study.
NDT tests were developed to aid obtaining information on the ef-
fective properties of material used in actual structures. Strength 
estimated obtained by the use of NDT techniques may be an inter-
esting control possibility. One of the essential features of NDT is 
that they allow performing repeated tests at the same or very close 
sites that enable following up variations in time [4]. It is possible 
to monitor concrete status with the systematic use of these tests, 
generating a much richer body of information as compared to tests 
performed only when concrete is cast.
Among the NDT tests applied to concrete, UPV seems to have 
an excellent potential, as it allows characterizing the materials, 
evaluating their characteristics, and measuring important physical 
properties. Several studies have shown that UPV can significantly 
aid in the detection of concrete micro-cracks and changes before 
visible signs appear [5], [6]. However, in order obtain useful and re-

liable results, the technical parameter affecting this technique and 
proper strategies for its performance must be understood. In addi-
tion, the proper interpretation of the results of NDT tests carried out 
in concrete structures is a complex and specialized activity due to 
the large amount of produced data and the variability of the factors 
that influence the test. 
Artificial Intelligence (AI) tools may be used to standardize and an-
alyze UPV data. There are two main research approaches to build 
artificial intelligence systems: the connectionist approach and the 
symbolic approach. The connectionist approach proposes model-
ing human intelligence by simulation brain components, i.e., neu-
rons and their connections by using ANNs, whereas the symbolic 
approach follows the tradition of logics [7].
The connectionist approach is based on the idea that intelligent be-
havior can only be achieved by a massive parallel system, similar 
to the neural connections of the Central Nervous System in human 
beings. This approach believes it is possible to model brain func-
tion. Connectionist systems have been increasingly used in tasks 
that include, for instance, pattern classification, intelligent controls, 
and image and signal processing. ANNs may be extremely useful 
to create complex non-linear systems with high degrees of uncer-
tainty. As a function of their function characteristics, ANNs are not 
dependent of a mathematical model that relates input with output 
data; they are applied when there is significant non-linearity, which 
makes modeling very difficult. In addition, ANNs are capable of 
making the acquired knowledge available for further analyses, 
allowing their data sets to be continuously updated, and thereby 
generating new models.
This study explores the hypothesis that, with the use of ANN tools, 
it is possible to perform a non-linear analysis of the relationship 
between concrete strength and UPV, taking into consideration the 
parameters cement type, cure temperature, water to cement ratio, 
and concrete age. It is expected that the application of ANNs will 
generate non-linear relationship models that will allow estimating 
concrete compressive strength based on the knowledge of those 
basic parameters and on UPV test results [8].
According to Boukerche and Notare [9], ANNs are justified as an 
option to build complex phenomenon analysis methods, such as 
estimating concrete compressive strength based on UPV read-
ings, because they have an intrinsic learning capacity based on 
a set of input data, allowing generalization in further analyses; are 
non-parametric, making decisions more accurate; and are capable 
of creating highly non-linear decision limits within the scope of the 
evaluated characteristics.

2. The use of ultrasonic pulse   
 propagation in concrete

The UPV is based on the longitudinal determination of the propa-
gation characteristics of an ultrasonic pulse through materials. It 
is widely use for the evaluation of concrete because it is efficient, 
simple to apply, and not expensive [10].
The method started to be developed in Canada and in the UK, al-
most at the same time. After the 1960s, with the development of por-
table equipment using batteries, the use this method went beyond 
the limits of laboratories, and started to be used in construction. In 
an article published in 1963, Jones already mentioned that the main 
objective of UPV testing in concrete was to evaluate concrete quality 
based on ultrasonic pulse velocity measurements [11].
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cylindrical concrete test samples. Sound velocity depends, among 
other factors, of the propagation material. As velocity rapidly de-
creases when propagating through liquids, and even faster in gas 
materials, mean propagation velocity can be used as an estimate 
of the amount of voids, and therefore, of material density. This 
characteristic is extremely important to understand and analyze 
the results of UPV tests [16].
According to the US standard ASTM E 114-95, UPV technique 
can be used for the detection of flaws, thickness measurements, 
or characterization of the materials of a body [17]. The Brazilian 
standard NBR 8802 established that UPV testing should be used 
to check concrete uniformity, to detect possible internal flaws of 
concrete casting, to monitor concrete characteristics during its life-
time, to evaluate the depth of cracks or other defects, to evaluate 
the deformation module, as well as to estimate concrete compres-
sive strength [18]. 
UPV can also be used for specific purposes, such as controlling 
stripping time, evaluating the presence of casting flaws or detect-
ing damage caused by fire. As the equipment is relatively easy 
to use and not expensive, several researchers have studied new 
purposes for UPV testing.
The result of the test consists in measuring the time (t) the impulse 
takes to travel distance (L) between the emitter and receiver trans-
ducers. The ultrasonic wave propagation velocity in the case of 
direct or semi-direct transmission is obtained by Equation 1:

(1) 610
L

V
t

-= ´

Where:
V = wave propagation velocity, in m/s
L = distance between two points, in m
t = wave propagation time, in µ s
The use of UPV allows verifying structure heterogeneities that 
are not externally visible. These heterogeneities may indicate 
casting flaws or defects, or higher porosity degree that are fre-
quently found in concrete structures and that are not necessarily 
visible or detectable by the usual NDT methods [19]. Moreover, 
the test may also be useful to identify casting failures, cracks or 
fissures in built structures. 
It must be highlighted that, because it is a nondestructive tech-
nique, UPV allows the performance of several tests in the same 
site to follow up changes associated with time. Due to the increas-
ing incidence of early deterioration of concrete structures, the 
continuous monitoring of building conditions is important, allow-
ing anticipating maintenance requirements, thereby increasing the 
lifetime of such structures.
Theoretically, a relationship between concrete density, as ex-
pressed by UPV, and compressive strength can be established. 
However, it is difficult to analyze using traditional statistical meth-
ods. It is currently considered that a reliable correlation between 
compressive strength and UPV readings can only be established 
in concrete structures with well-defined characteristics, and 
therefore it cannot be extrapolated to concrete structures with 
different characteristics, except when establishing a model that 
correlates this variation in the characteristics with variations in 
compressive strength. 

In dispersive media, such as concrete, the test provides three dif-
ferent parameters for analyses: ultrasonic pulse propagation ve-
locity and pulse amplitude and dispersion. Complex equipment 
that includes oscilloscopes allows the analyses of pulse amplitude 
and dispersion. However, most portable equipment record only 
pulse transmission velocity [12].
UPV testing is a useful tool for concrete evaluation because its re-
sults are strongly influenced by material compactness, which is as-
sociated to its compressive strength [13]. UPV methods are easy 
to apply, are reliable and safe, providing quantitative information 
on the initial characteristics of concrete micro-structure and allow-
ing the local evaluation of concrete conditions [14]. 
UPV testing has been increasingly employed in structure diagno-
sis, as it allows characterizing the material, evaluating its integrity, 
and measuring important physical properties by monitoring the 
propagation velocity of high-frequency sound waves through the 
evaluated material [15].
As it is fast and nondestructive, UPV offer the opportunity of es-
tablishing total control of the elements that compose the struc-
ture, including during its service life. The results of this kind of 
analysis can be used for quality prognosis or for correction of 
technological processes.
UPV equipment includes a pulse generator that excites a 
piezoelectric transducer (emitter), which produces ultrasonic 
waves that are transmitted as pulses through the material un-
der analysis. This means that a series of electric impulses gen-
erated by the apparatus is applied on the transducer, which 
converts pulses into mechanic energy in for form of waves with 
nominal frequency in the range of tens of kilohertz. A second 
piezoelectric transducer is used as receptor, where sound 
pulses are transformed into electric impulses [8]. The time re-
quired for the propagation of UPV inside the material is calcu-
lated by controlling the interval of time between emission and 
reception and subtracting the interval of time spent through 
wires and transducers.
Figure 1 illustrates an ultrasonic pulse propagation velocity test in 

Figure 1 – Aspect of the performance 
of an UPV test
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n Compare ANN performance with traditional statistical model in 
the estimation of the compressive strength of concrete struc-
tures with very different characteristics.

Considering these objectives, the present study was divided in 
three basic steps: data collection and generation, ANN modeling 
and training, and validation.

4.1 Step 1 – Data Collection and Generation 

Networks are considered excellent tools to aid in the interpre-
tation of UPV test results, particularly to obtain compressive 
strength estimates. However, in order to be efficient, the data set 
used to create these networks should include a wide variation in 
the parameters considered essential for ANN learning based on 
the analysis of previous experiences. This first step of the study 
was dedicated precisely to obtain a high number of data correlat-
ing UPV readings with concrete compressive strength for ANN 
initial feeding and validation. In addition to collecting all available 
data found in literature survey, additional information were gen-
erated, such as changes in concrete properties that could affect 
UPV readings. To this end, a set of test samples with different 
characteristics was cast, including different w/c ratios, cure, age, 
aggregate and cement types, which were considered relevant 
to the authors. Each test samples was submitted to UPV mea-
surements before being broken by compression. These data, ob-
tained in a controlled manner, allowed generating models on how 
the variation of determined characteristics affects UPV, and were 
later used as additional input data to train the ANN generated to 
estimate concrete compressive strength, which was performed in 
the second step of the study.

4.2 Modeling and Training of the Neural Networks

The objective of the second step of the study was to develop and 
test ANNs specialized in estimating concrete compressive strength 
based on UPV data and other additional input data related to the 
characteristics of the concrete under analysis. The experiments of 
this step were divided in two stages. During the preliminary stage, 
a small data set (130 data) was used. These data were generated 
by the author during his study to obtain his master’s degree and 
presented little variation in terms of concrete characteristics. 
Despite the reduced number of data of this phase to ensure the 
good performance of the network, the preliminary tests were used 
as a support to determine the basic structure that allowed building 
the ANNs that would be employed in the main stage. Different net-
work configurations were tested, with a variable number of hidden 
layers and different neuron numbers in each layer.
During the main stage, a larger data set was used, with 2018 
records (representing approximately 90% of the available data, 
characterized by a wide variability of concrete types and char-
acteristics. The input data derived from several studies carried 
out in other institutions and places in order to determine if a ge-
neric ANN is adequate to represent a wide variety of collected 
data, that is, if it is possible to establish representative models 
that are not limited to the results obtained in a single study. This 
wide variety of input parameters theoretically allows the gener-
ated networks to have high flexibility, and therefore, to be used 
to estimate the compressive strength of concrete structures with 
many different characteristics.

3. Factors that affect UPV and the   
 Mechanical Properties of Concrete
 
In the case of concrete, there are many parameters that can affect 
ultrasonic pulse velocity readings. The most important are mois-
ture content, aggregate and cement type, and carbonation. In ad-
dition, variation in the proportion of inputs to make concrete or the 
mixing method applied may significantly affect UPV readings. It 
must also be mentioned that material strength and porosity change 
with time due to the non-uniform progression of chemical reactions 
inside the material during hydration.
The factors affecting UPV readings can be divided in two main 
categories: a) factors that affect both concrete properties and UPV 
readings, such as coarse aggregate type, content, size, and gradu-
ation, cement type, w/c ratio, sample size, and concrete age; and 
b) factors that affect only UPV measurements, but do not interfere 
in concrete properties, such as contact conditions between trans-
ducers and concrete, concrete temperature, wave length, tension 
levels, and the presence of rebars [20].

4. Materials and Experimental Program

UPV tests were carried out using a portable apparatus with low-
frequency surface transducers (54 kHz), model V-METER Mark 
II, manufactured by James Instrument Inc. This equipment allows 
reading the transmission time of an ultrasonic pulse from the emit-
ter transducer to the receiver transducer with a resolution of 0.1 
micro-seconds. It does not require a calibration bar because it has 
a microprocessor that records the values relative to transducer and 
cable delays when the system is turned on.
During the preliminary phase, ANNs based on data from 130 re-
sults collected by Lorenzi [21] in the LMCC (Laboratório de Ma-
teriais de Construção Civil – Civil Construction Materials Labora-
tory) of the Federal University de Santa Maria (UFSM), Brazil, 
were assembled, trained, and tested. This preliminary data set 
included data from UPV tests carried out in tests samples at dif-
ferent ages that were later submitted to compression. Despite 
the small size of the preliminary sample, it allowed analyzing the 
potential of utilization of the assembled ANNs to assess concrete 
using UPV results.
During the next phase, input data to feed the neural networks 
were generated by an experimental program of UPV and com-
pressive strength tests of concrete samples with very different 
characteristics. These input data would allow changing, in a 
structured manner, the geometric parameters of the tested neu-
ral networks in order to analyze their response capacity and pro-
cessing speed.
A structured research strategy was adopted expecting that, based 
on a combination of literature survey, tests, and ANN modeling, with 
the aid of the software program Matlab, it would be possible to:
n Evaluate the effect of the variation of determined basic con-

crete characteristics on UPV readings; 
n Define a basic structure to create ANNs, enabling them to es-

timate compressive strength based on UPV results, combined 
or not with data on other basic concrete characteristics;

n Test the feasibility of building an ANN including a wide range of 
input data, aiming at obtaining robust networks that would al-
low estimating the compressive strength of concrete structures 
with very different characteristics;
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4.3 Validation

During the third step, the generated ANNs were submitted to two 
validation types. Firstly, in order to analyze their modeling ca-
pacity and accuracy, estimates obtained with the networks were 
compared to those obtained with multiple non-linear regressions, 
which were generated with the same 2018 records used for net-
work training. Estimate mean error (in MPa) was used to compare 
the performance of the two modeling alternatives.
In addition, 225 new input data, which were not used during training, 
were used to analyze the network capacity of estimating compressive 
strength. These data, comprising about 10% of the total records avail-
able, were selected in a semi-random manner, that is, 1 of every 10 
data was randomly taken, and the sample was subdivided to maintain 
data with very different characteristics in the subset used for validation.
As previously explained in details, the objective to the main stage of the 
study was to generate and to test several ANN configurations consist-
ing of different numbers of neurons in each layer. Based on the prelimi-
nary tests carried out with the reduced data set, we defined that:
n 3 hidden layers, instead of 2, would be used in the preliminary 

phase in order to provide higher non-linear processing capacity 
to the tested networks;

n The transference functions between the input and the hidden 
layers would be hyperbolic tangents, whereas the transference 
function of the output layers of the ANN would be linear.

Therefore, the essential topology of the networks was established 
as perceptron consisting of five layers (1 input layer, 3 hidden lay-
ers, and 1 output layer). This morphology creates a large number 
of correlations among the neurons in the hidden layers, improving 
their capacity of non-linear estimation and conferring good flex-
ibility and interpretation capacity to the network, with not very high 
computational processing efforts.
Once the topology was established, it was defined that ANNs with 
2 to 8 neurons of the 1st hidden layer and 10 to 48 neurons of the 
other hidden layers would be tested. These intervals were deter-
mined considering that the number of neurons increases the quan-
tity and the complexity of iteractions, which negatively affects the 

time required for each simulation, but has a positive impact on the 
error level achieved during the simulations. Figure 1 illustrates the 
basic topology of the tested networks.
Therefore, the configuration of the simplest ANN tested was type 
Ex2x4x4xS and that of the largest and most complex was type 
Ex8x20x20xS. Placing a higher number of neurons in layers more 
distant to the input provides higher processing flexibility. Table 1 
illustrates all the different configurations of the tested networks.

5. ANN Training

After normalization, the data set was divided in two groups:
n Main group: containing 2018 (two thousand and eighteen) 

or 90% of the data in the data set, which were used to train 
the networks;

n Test group: containing 225 (two hundred and twenty five) or 
10% of the data in the data set, which were extracted and used 
to validate the networks.

Groups were randomly defined, and care was taken to ensure 
that both groups contained data with high amplitudes. The Main 
Group was used for network training with the aid of the EBP (Er-
ror Back Propagation) algorithm. Estimate error and computa-
tional time were recorded during the process.
As previously emphasized, the process of ANN training is essen-
tial to build good ANN models. Several issues are involved in this 
process, such as learning algorithm type and network stopping de-
cisions, thereby preventing the loss of ANN generalization power. 
Based on the preliminary phase results, it was decided the training 
algorithm to be used during the main stage would be EBP, which 
was successfully used in the previous phase. The following train-
ing parameters were also determined:
n Maximum of de 10,000 iteractions or training epochs;
n Target error very close to zero (0.0001).
This ensured that all networks would be submitted to the same 
number of training epochs and that the recorded error would be as 
low as possible for the training conditions.
It must be noted here that the data set used to generate and train 

Table 1 – Summary of the configurations of the networks

7x2x4x4x1 7x2x12x16x1  7x4x4x4x1 7x4x12x16x1  7x6x4x4x1 7x6x12x16x1  7x8x4x4x1 7x8x12x16x1

7x2x4x8x1 7x2x12x20x1  7x4x4x8x1 7x4x12x20x1  7x6x4x8x1 7x6x12x20x1  7x8x4x8x1 7x8x12x20x1
7x2x4x12x1 7x2x16x4x1  7x4x4x12x1 7x4x16x4x1  7x6x4x12x1 7x6x16x4x1  7x8x4x12x1 7x8x16x4x1
7x2x4x16x1 7x2x16x8x1  7x4x4x16x1 7x4x16x8x1  7x6x4x16x1 7x6x16x8x1  7x8x4x16x1 7x8x16x8x1
7x2x4x20x1 7x2x16x12x1  7x4x4x20x1 7x4x16x12x1  7x6x4x20x1 7x6x16x12x1  7x8x4x20x1 7x8x16x12x1

7x2x8x4x1 7x2x16x16x1  7x4x8x4x1 7x4x16x16x1  7x6x8x4x1 7x6x16x16x1  7x8x8x4x1 7x8x16x16x1
7x2x8x8x1 7x2x16x20x1  7x4x8x8x1 7x4x16x20x1  7x6x8x8x1 7x6x16x20x1  7x8x8x8x1 7x8x16x20x1

7x2x8x12x1 7x2x20x4x1  7x4x8x12x1 7x4x20x4x1  7x6x8x12x1 7x6x20x4x1  7x8x8x12x1 7x8x20x4x1
7x2x8x16x1 7x2x20x8x1  7x4x8x16x1 7x4x20x8x1  7x6x8x16x1 7x6x20x8x1  7x8x8x16x1 7x8x20x8x1
7x2x8x20x1 7x2x20x12x1  7x4x8x20x1 7x4x20x12x1  7x6x8x20x1 7x6x20x12x1  7x8x8x20x1 7x8x20x12x1
7x2x12x4x1 7x2x20x16x1  7x4x12x4x1 7x4x20x16x1  7x6x12x4x1 7x6x20x16x1  7x8x12x4x1 7x8x20x16x1

7x2x12x8x1 7x2x20x20x1  7x4x12x8x1 7x4x20x20x1  7x6x12x8x1 7x6x20x20x1  7x8x12x8x1 7x8x20x20x1
7x2x12x12x1 7x4x12x12x1 7x6x12x12x1 7x8x12x12x1
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the networks contained research data from several laboratories, 
obtained by different operators, using different materials, with 
different curing conditions and temperatures. Thus, if presenting 
good resolution power, the generated networks would be useful in 
real situations requiring estimating concrete compressive strength.

Figures 2 to 7 show the training development of some ANNs gen-
erated during this phase. In the graphs, the blue line (top) repre-
sent the error value calculated at the end of each network training 
epoch and the black line (bottom) represents the maximum error 
determined for the network.

Figure 2 – Basic morphology of the tested ANNs

Figure 3 – ANN training evolution for 
1250 epochs – Network 7x2x8x16x1

Figure 4 – ANN training evolution for 
500 epochs – Network 7x2x16x8x1
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The figures clearly show that, during the first training epoch, syn-
aptic weights were adjusted faster, with a rapid reduction in error 
values. During subsequent training epochs, adjustments are less 
efficient, and the error values tend to stabilize. 
It is interesting to recall that the applied training process aims at 
progressively reducing the error by the experimental analysis of a 
determined neighborhood around the training epoch. The software 
program tries several small changes in synaptic weights in order to 
determine which is the highest reduction in the error surface. The 
use of the EBP algorithm significantly reduces the computational 
effort. However, this type of training may lead to minimal error po-
sitions, instead of minimal absolute error. This is why it is inter-
esting to perform several trainings, changing the initial matrix of 
synaptic errors to make research in different error surface zones.
 
6. Results and discussion

6.1 Analysis of mean ANN error

Figures 8 to 11 show the mean error obtained in the tested ANNs 
organized according to the basic geometry of each network (where 
n is the number of neurons in the second hidden layers and m the 
number of neurons of the third hidden layer.) 
The figures show that several network configurations obtained very 
low errors1, clearly showing the significant utilization potential of 
this modeling tool. In some networks, mean errors reached values 
below 4 MPa (ANN 7x4x20x20x1, ANN 7x6x20x20x1 and ANN 
7x8x20x20x1), with network 7x8x20x20x1 obtaining the lowest error 
(3.09 MPa) in this phase. It is evidenced that the increase in neu-
ron numbers significantly contributed to reduce the mean error of 
the estimate. In some cases (ANN 7x2x12x12x1, 7x2x20x16x1 and 
7x4x12x4x1), the result of the simulation was not satisfactory (mean 
error > 10 MPa, with generation of functions with low data adherence). 
These three networks presented few neurons in the first hidden layer. 
The figures also show that none of the networks with only two neu-
rons in the first hidden layer reached the 5 MPa error limit, indi-
cating that this type of network demands a very high number of 

neurons in the following layers to obtain adequate results.
Figure 12 demonstrates the error percentage obtained in the network 
simulations performed, organized in ranges. The range of training er-
rors obtained for most of the tested networks (62) was between 4 and 
6 MPa (in 28, it was between 4 and 5 MPa and in 34, between 5 and 
6 MPa). Seven ANN configurations obtained errors below 4 MPa, and 
the best performance was achieved by ANN 7x8x20x20x1 (3.09 MPa).

6.2 Analysis of Estimation Adequacy

Figures 13 to 28 present the simulation results of some of the 
ANNs tested as compared to the statistical model of estima-
tion by regression. In these figures, the red diamonds represent 
the original data; the green circles, the values estimated by the 
networks; and the blue crosses, the results obtained with tradi-
tional modeling.

Figure 5 – ANN training evolution for 
1500 epochs – Network 7x4x8x16x1

Figure 6 – ANN training evolution for 
500 epochs – Network 7x2x8x16x17x6x12x20x1

Figure 7 – ANN training evolution for 
10,000 epochs – Network 7x8x16x20x1

1 Errors lower than 5 MPa were considered low in an universe ranging between 5 and 100 MPa (i.and., an error corresponding to 5% of the maximal 
interval value). The red line in the figures indicates this “satisfactory” limit of the mean error.
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Figure 8 – ANN training evolution for 
10,000 epochs – Network 7x2x8x16x1

Figure 9 – Estimate mean error – Networks 
st 2 neurons in the 1 hidden layer

Figure 10 – Estimate mean error – Networks 
st4 neurons in the 1  hidden layer

Figure 11 – Estimate mean error – Networks 
st6 neurons in the 1  hidden layer

Figure 12 – Estimate mean error – Networks 
st8 neurons in the 1  hidden layer

Figure 13 – Mean error ranges (in MPa) 
of the performed simulations
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A good adherence between the values estimated by the networks and 
the actual values is observed, demonstrating that the networks are able 
to capture and to reproduce the non-linear behavior. The difficulty of 
performing this task is illustrated by the results obtained with the tradi-
tional model, which was not able to adequately represent the phenom-
enon and resulted in a very rudimentary simulation of that behavior.

6.2.1. Network 7x6x20x20x1 (46 neurons in the hidden layers)

Figures 13 to 20 show the results of the simulations using ANN 
7x6x20x20x1, with 46 neurons distributed in the three hidden lay-
ers and a considerable number in the first hidden layer (6). This 

Figure 14 – UPV x fc relationship – network 
7x6x20x20x1 – training data set

Figure 15 – UPV x fc relationship – network 
7x6x20x20x1 – test data set

Figure 16 – UPV x fc x age relationship – network 
7x6x20x20x1 – training data set

Figure 17 – UPV x fc x age relationship – 
network 7x6x20x20x1 – test data set

Figure 18 – UPV x fc x w/c ratio relationship – 
network 7x6x20x20x1 – Training data set
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was configuration was shown to be relatively adequate, as this 
network achieved a mean error value of 3.66 MPa in the resulting 
estimates using the training data set. 
A high adherence of the estimated values with the training data 
is visually observed, demonstrating that the network was able to 
adequately simulate the behavior of concrete in this stage of the 
simulation. However, the results of the simulations carried out with 
the data set show that this network was not able to maintain its 
good performance. The graphs show that most of the estimates 
were distant from the actual data. The mean error was 6.90 MPa. 

6.2.2. Network 7x8x20x20x1 (48 neurons in the hidden layers)

Figures 21 to 28 present the results of the simulations performed 
by ANN 7x8x20x20x1, with 48 neurons distributed in the three hid-

Figure 19 – UPV x fc x w/c ratio relationship – 
network 7x6x20x20x1 – Test data set

Figure 20 – UPV x fc x temperature relationship – 
network 7x6x20x20x1 – Training data set

Figure 21: UPV x fc x Temperature relationship – 
network 7x6x20x20x1 – Test data set

Figure 22 – UPV x fc relationship – network 
7x8x20x20x1 – Training data set

Figure 23 – UPV x fc relationship – network 
7x8x20x20x1 – Test data set
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den layers and a considerable number in the first hidden layer (8). 
This configuration was adequate, and this was the network pre-
senting the best result, with a mean error of only 3.09 MPa in the 
estimates using the training data set.
Moreover, the results of the simulations performed with the test 
data set were also very good, with a mean error of 3.59. The graphs 
show excellent adherence of the estimated values with actual data, 
showing that this network was able to adequately simulate the be-
havior of concrete using the variables used for analysis. Therefore, 
this is a tool capable of estimating, with a low error index, the value 
of compressive strength of different concretes based on a neural 
model built with data from other concrete samples. 

6.3 Investigation of Simulation Times

The results discussed in the previous section demonstrate that 
the estimation capacity of ANNs increases as the number of neu-

rons in the hidden layers increase. Among the tested networks, 
that containing 48 neurons, with a high number of neurons in each 
layer, had the best performance.
The problem associated with the increase in the number of neu-
rons is that the network complexity exponentially increases, result-
ing in increasing computational cost to adjust synaptic weights.
Aiming at determining the computational cost derived from 
this increase in neuron numbers, Table 2 illustrates the times 
spent in the simulations performed by the different networks 
tests. It is observed that an increase in neuron numbers in 
any layer corresponds to an increase in the computational 
cost spent to perform the simulations. The increase in the 
complexity of the interrelationship among neurons signifi-
cantly contributes for the increase in the computational time 
spent in the simulation.
The best results were obtained with largest network tested, 
8x20x20x1. The time it spent for the simulation was of approxi-

Figure 24 – UPV x fc x Age relationship – network 
7x8x20x20x1 – Training data set 

Figure 25 – UPV x fc x Age relationship – 
network 7x8x20x20x1 – Test data set

Figure 26 – UPV x fc x w/c ratio relationship – 
network 7x8x20x20x1 – Training data set

Figure 27 – UPV x fc x w/c ratio relationship – 
network 7x8x20x20x1 – Test data set
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Figure 28 – UPV x fc x temperature relationship – 
network 7x8x20x20x1 – Training data set

Figure 29 – UPV x fc x temperature relationship – 
network 7x8x20x20x1 – Test data set

mately 6h, which is high, but does not preclude its use for the gen-
eration of a broad-spectrum estimation model. 
Considering that reductions in error values become increasing 
lower as the size of the networks increase and that the compu-
tational structure available at the time this study was performed, 
we believed that further increases in the size of the networks was 
not recommendable, as this would require increasingly higher pro-
cessing times for network training.
In order to measure performance gains and computational times 
for networks larger than those tested, an ANN with a 10x20x20x1 
configuration was evaluated and presented a mean error of 3.06 
MPa and a simulation time of 12:40h. As compared with ANN 
8x20x20x1, the reduction in mean error was only of 0.03 MPa, 
whereas the increase in simulation time almost doubled. 
However, depending on the nature of the problem to be solved, it 
may be necessary to increase the number of neurons in the ANN 
layers. Simulation time obviously does not preclude the creation of 
ANNs, especially considering the continuous increase in the pro-
cessing capacity of personal computers. However, considering the 
current computational processing capacity of personal computers 
and the acceptable standard error values adopted in the present 
study, it is suggested that the adequate neuron number to gen-
erate a flexible and efficient network to estimate concrete com-
pressive strength is approximately 50, provided there is a proper 
amount of neurons (>6) in each layer.

7. Conclusions

UPV tests are increasingly used in Civil Engineering, and have 
been shown to be useful to analyze homogeneity differences and 
to detect micro-crack patterns in deteriorated concrete structures. 
One important advantage of UPV tests is that their application does 
not cause any damage in structures being used, which is extreme-
ly important for diagnosis and definition of intervention strategies.
This study aimed, in particular, to evaluate the possibility of using 
UPV testing also to estimate concrete compressive strength (fc), 
which is a difficult task because concrete is a very heterogeneous 
material and changes with time, hence making the relationship be-

tween compressive strength and UPV test results very complex. 
The amount of voids, w/c ratio, type of aggregate, etc. are factors 
that affect concrete compressive strength values, and this is why 
traditional methods to model the UPV x fc relationship usually do 
not yield good results.
The novel approach used the present study was the development 
of neural models. Considering the synergy of effects and the lack 
of knowledge on every parameter that affects fc, it is possible to 
conclude that this problem requires non-linear modeling of an al-
most non-structured knowledge. The tool proposed to handle this 
type of data in the present study was the ANN modeling technique, 
which was shown to be efficient.
It was found that, due its high learning capacity and ability to gen-
eralize the acquired knowledge, an ANN may be a fast and preci-
sion tool for the interpretation of the results of complex phenom-
ena. It was shown that networks, in general, may produce better 
compressive strength estimates than traditional methods, such as 
non-linear multiple regression. If well trained and having adequate 
configuration, these networks may reach very low error levels (< 
4 MPa).
The good results obtained here indicate that ANNs have a great 
potential for producing robust and flexible numerical methods to 
estimate concrete compressive strength suing UPV data. The 
simulations performed in the second and third phase of this study 
showed that the learning capacity of an ANN and its ability to gen-
eralize the acquired knowledge directly depends on the amounts 
of neurons present in each hidden layer. The results also indicate 
that a minimum amount of neurons (preferably, more than 4) is 
required in each layer to allow the network to model complex phe-
nomena. It was shown that the use of a high number of neurons 
considerably increases the explanatory power of the networks, but 
this requires increasing computational costs.
In general, it was found that:
n The study indicates that UPV tests are sensitive to changes 

in homogeneity and density, and therefore, may provide im-
portant data to support decision-making relative to concrete 
compressive strength, and therefore, contribute to the quality 
control of concrete structures;
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n It was found that the use of UPV tests for concrete assessment 
requires better methods to analyze the results, and that ANNs 
can be used for this purpose;

n UPV tests allowed generating adequate concrete compres-
sive strength estimates, which can be sued in the analysis 
of the data obtained in these test, with adequate degree of 
confidence;

n The results show that it is possible to generate a non-linear 

mapping of the relationship between concrete compressive 
strength and UPV readings by the use of ANNs. The modeling 
of this relationship should take into account parameters such 
as curing, cement, concrete temperature, w/c ratio, and con-
crete age;

n The model including only concrete age and UPV readings as 
input variables was able to make estimations with mean errors 
below 4 MPa;

Table 2 – Simulation time

Network Time (h) Network Time (h) Network Time (h) Time (h) Network 

 2x4x4x1 00:15 4x4x4x1 00:20 6x4x4x1 00:22 8x4x4x1 00:11 

2x4x8x1 00:22 4x4x8x1 00:24 6x4x8x1 00:29 8x4x8x1 00:42 

2x4x12x1 00:24 4x4x12x1 00:27 6x4x12x1 00:33 8x4x12x1 00:51 

2x4x16x1 00:33 4x4x16x1 00:40 6x4x16x1 00:46 8x4x16x1 00:55 

2x4x20x1 00:41 4x4x20x1 00:45 6x4x20x1 01:05 8x4x20x1 01:17 

2x8x4x1 00:20 4x8x4x1 00:30 6x8x4x1 00:37 8x8x4x1 00:40 

2x8x8x1 00:32 4x8x8x1 00:34 6x8x8x1 00:50 8x8x8x1 01:04 

2x8x12x1 00:45 4x8x12x1 01:04 6x8x12x1 01:05 8x8x12x1 01:16 

2x8x16x1 00:50 4x8x16x1 01:08 6x8x16x1 01:35 8x8x16x1 01:25 

2x8x20x1 01:10 4x8x20x1 01:05 6x8x20x1 01:40 8x8x20x1 01:55 

2x12x4x1 00:31 4x12x4x1 00:38 6x12x4x1 00:45 8x12x4x1 00:55 

2x12x8x1 00:45 4x12x8x1 00:57 6x12x8x1 01:10 8x12x8x1 01:17 

2x12x12x1 00:50 4x12x12x1 01:15 6x12x12x1 01:31 8x12x12x1 01:35 

2x12x16x1 01:15 4x12x16x1 01:39 6x12x16x1 01:58 8x12x16x1 02:07 

2x12x20x1 01:45 4x12x20x1 01:55 6x12x20x1 02:05 8x12x20x1 02:19 

2x16x4x1 00:40 4x16x4x1 01:03 6x16x4x1 01:15 8x16x4x1 01:26 

2x16x8x1 01:22 4x16x8x1 01:25 6x16x8x1 01:35 8x16x8x1 01:55 

2x16x12x1 01:30 4x16x12x1 01:41 6x16x12x1 01:55 8x16x12x1 02:23 

2x16x16x1 01:50 4x16x16x1 02:06 6x16x16x1 02:40 8x16x16x1 02:53 

2x16x20x1 01:55 4x16x20x1 02:41 6x16x20x1 03:35 8x16x20x1 05:32 

2x20x4x1 00:41 4x20x4x1 00:42 6x20x4x1 01:06 8x20x4x1 01:43 

2x20x8x1 01:14 4x20x8x1 01:32 6x20x8x1 01:50 8x20x8x1 03:05 

2x20x12x1 01:31 4x20x12x1 02:02 6x20x12x1 02:08 8x20x12x1 03:12 

2x20x16x1 02:20 4x20x16x1 02:50 6x20x16x1 03:25 8x20x16x1 04:08 

2x20x20x1 03:20 4x20x20x1 04:20 6x20x20x1 04:40 8x20x20x1 06:16        
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n The study demonstrated a clear improvement of the analysis 
results when ANNs were used relative to traditional statistical 
methods. Even the simplest ANN obtained better estimations 
than traditional statistical methods, which were shown to be 
limited as they were not able to yield a satisfactory relation-
ship representing the actual relationship among those vari-
ables. When performing a simulation using the same results 
of the ANN data set, traditional methods did not produce an R² 
value higher than 0.40, whereas the ANNs produced R² values 
around 0.90;

n In addition of contributing for a better analysis in situations 
where concrete compressive strength or density are doubtful, 
ANN can efficiently organize and transfer the non-structured 
knowledge accumulated in this field, in addition to providing the 
possibility of being used for training professionals involved in 
the application of ultrasonic tests;

n Due to their capacity of learning and generalizing the acquired 
knowledge, ANNs are a fast an accurate method to interpret 
results of complex phenomena.

These conclusions evidence the ANN potential to estimate con-
crete compressive strength based on UPV readings, as well as to 
generate useful tools for structure inspections.
Considering this potential, a patent relative to a “Method to Deter-
mine the Properties of Concrete by the Use of Non-Linear Com-
plex System of Data Treatment and Device Using such Method” 
was requested to INPI – Instituto Nacional de Propriedade In-
telectual (Brazilian Institute of Intellectual Property), and accept-
ed. The patent was issued under number PI 0702238-7, depos-
ited on 08/09/2007 and subject of Patent Request Publication on 
03/24/2009. 
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