
In this paper the efficiency of Branson’s equivalent inertia to consider the physical nonlinearity of beams in simple form is evaluated. For this 
purpose, several reinforced concrete plane frames of medium height are analyzed using ANSYS software. Initially, the frames are processed 
considering both physical and geometric nonlinearities. Next, geometric nonlinear analyses are performed, considering a physical nonlinearity 
approximated through the stiffness reduction in the structural elements. In the case of the columns, the stiffness was reduced by 20% and, for the 
beams, the inertia reduction values according to the Branson [1] formula and the NBR 6118:2007 [2] Brazilian Norm were used. It was observed 
that the inertia reduction according to the Branson [1] formula better represents the actual behavior of the structures at the service limit state.  
Furthermore, it was verified that the use of Branson’s equivalent inertia is more efficient at representing the behavior of the more flexible frames 
than stiffer frames. 
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Neste trabalho busca-se avaliar a eficiência da inércia equivalente de Branson [1] para considerar a não-linearidade física das vigas de forma 
simplificada. Com este objetivo, são realizadas diversas análises numéricas de pórticos planos medianamente altos em concreto armado utili-
zando o “software” ANSYS. Inicialmente, os pórticos são processados considerando ambas as não-linearidades geométrica e física. Em seguida, 
são realizadas análises não-lineares geométricas, considerando a não-linearidade física de forma aproximada, por meio da redução de rigidez 
dos elementos estruturais. No caso dos pilares, a rigidez foi reduzida em 20% e, para as vigas, foram utilizados os valores de redução de inér-
cia segundo a formulação de Branson [1] e aqueles recomendados pela NBR 6118:2007 [2]. Observa-se que a redução de inércia segundo a 
formulação de Branson [1] representa o comportamento das estruturas com maior precisão no estado limite de serviço. Além disso, mostra-se 
que a utilização da inércia equivalente de Branson [1] é mais eficiente para representar o comportamento dos pórticos mais flexíveis do que dos 
pórticos mais rígidos.

Palavras-chave: concreto armado, não-linearidade física, inércia equivalente de Branson. 
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1. Introduction

In recent decades, following the example of other areas, engi-
neering has made great advances, particularly regarding designs 
and civil construction. Optimization techniques related to terms of 
weight and form, the development of testing equipment and com-
puters and efficient numerical modeling have lead to more eco-
nomical and elegant constructions and to higher buildings and 
bolder designs.
Therefore, issues not properly approached before have come to be 
of fundamental importance in structural design. Of note among these 
issues is stability analysis and second order effect assessment.
Second order effects occur when the equilibrium analysis for the 
structure is conducted based on its deformed configuration. As a 
result, the existing forces interact with the displacements, produc-
ing additional efforts. The second order efforts introduced by hori-
zontal displacements lead to joints in the structure, when subjected 
to vertical and horizontal loads, are called second order global ef-
fects; these effects may be extremely important and significant in 
some structures; in others, they need not be taken into account.
In stiffer structures, the horizontal displacements of the joints are 
small and, consequently, the second order global effects have a 
small influence on the total efforts, and may then be dispersed. 
These structures are called nonsway structures.
On the other hand, there are more flexible structures, the horizon-
tal displacements of which are significant and for which, there-
fore, the second order global effects represent an important part 
of the final efforts, as they cannot be dispersed; this is the case 
with sway structures.
According to NBR 6118:2007 [2], if the second order global effects 
are less than 10% of the respective first order efforts, the structure 
may be classified as a nonsway structure. In this case the efforts 
obtained through the first order analysis are applied. However, if 
the second order global effects are in excess of 10% of the first or-
der effects, the structure is classified as a sway structure and must 
be analyzed taking into consideration the effects of the geometric 
and physical nonlinearities.
It is clear, therefore, that analysis of a sway structure is much more 
complex than that for a nonsway structure. This is because conduct-
ing an analysis that takes into consideration the effects of geometric 
and physical nonlinearities, for reinforced concrete structures, may 
result in an arduous task, demanding great amounts of computing 
power and tools that are not always available in the offices where 
the calculations are made. It therefore becomes essential that sim-
plified methods of simulating, safely, the effects of geometric and 
physical nonlinearities on the structure be developed.
The consideration of geometric nonlinearity demands more refined 
analyses, which take into consideration some degree of modifica-
tion to the structure stiffness matrix, or the utilization of simplified 
processes, such as the final efforts assessment method (which 
include second order ones) employing the global instability coef-
ficient gz as a magnifier of the horizontal loads.
Taking the physical nonlinearity in consideration requires deter-
mining the stiffness of each structural element based on the con-
stitutive relationships of the materials, the quantity and the disposi-
tion of the reinforcement in the element and the level of demand it 
requires. As this is a labor-intensive process, many studies have 
been conducted that deal with physical nonlinearity in an approxi-

mate manner, by means of a reduction in the stiffness of the struc-
tural elements. 
In this paper the goal is to assess the efficiency of Branson’s in-
ertia equivalent [1] to consider the physical nonlinearity of beams 
in simple form. With this objective, various numerical analyses are 
performed of reinforced concrete plane frames of medium height 
utilizing ANSYS software. Initially, the structures are processed 
considering both the geometric and physical nonlinearities. Next, 
geometric nonlinearity analyses are performed, dealing with physi-
cal nonlinearity in an approximate manner by means of a reduction 
in the stiffness of the structural elements. In the case of columns, 
the stiffness was reduced by 20% and, for beams, inertia reduc-
tion values were used in accordance with Branson’s formula [1] 
and the formulas recommended in NBR 6118:2007 [2]. The results 
of the geometric nonlinearity analyses, with the simplified physi-
cal nonlinearity method are, then, compared with those obtained 
through the geometric and physical nonlinearity analyses, which 
are capable of representing the actual behavior of structures with 
greater precision.

2. Simplified physical nonlinearity   
 method according to NBR 6118:2007 [2]

NBR 6118:2007 [2] establishes, for the approximation of physical 
nonlinearity, the following structural element stiffness values:
n slabs: (EI)sec = 0.3 EciIc;
n beams: (EI)sec = 0.4 EciIc when A’s ≠ As or (EI)sec = 0.5 EciIc when 

A’s = As;
n columns: (EI)sec = 0.8 EciIc; 
in which:
n Ic – moment of inertia of gross concrete section;
n A’s – area of compression reinforcement;
n As – area of tension reinforcement;
n Eci – initial concrete elasticity modulus, arrived at by:

(1) )MPa(f5600E ckci =

n fck – characteristic strength of the concrete to compression, in MPa.
The norm also allows, when the bracing structure is composed 
only of beams and columns and the global instability coefficient 
gz is less than 1.3, for the adoption of (EI)sec = 0.7 EciIc for both the 
elements.
It is worth mentioning that, according to the results of Pinto et al. 
[3], reductions in stiffness equal to 0.4 EI and 0.5 EI for beams and 
0.8 EI for columns have been shown to be safe, including the value 
of 0.4 EI for beams for which A’s ≠ As, which is the most common 
situation, is even a bit low. In addition, it appears more rational 
to adopt different reductions in stiffness for beams and columns, 
since the limit state of cracking in these elements is not the same, 
due to the efforts to which they are subjected.
The adoption of a single value of 0.7 EI for beams and columns 
was probably done in an effort to facilitate the analysis of the struc-
ture. However, according to Lima [4], this procedure must be used 
with caution, especially when the beams make a significant contri-
bution to global stiffness.
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or more supports and the moment in support for cantilevers, for the 
combination of actions considered in this assessment;
- Mr is the cracking moment of the structural element, calculated 
using:

(4)
 

t
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with a equal to 1.5 for rectangular sections and 1.2 for T or 
double-T sections, yt being the distance from the center of grav-
ity to the most tensioned fiber, and fct the strength to the direct 
tension of the concrete, in accordance with item 8.2.5 of NBR 
6118:2007 [2].
According to the ACI Committee 435 [5], the equivalent stiffness 
can be obtained with greater precision, for spans with continuous 
beams, by pondering the equivalent stiffness values of the regions. 
Thus, for the spans shown in figure [1], the value pondered for the 
equivalent stiffness is arrived at using: 

(5)(EI)eq,pond  = [(EI)eq,1.a1  + (EI)eq,2.a2 + (EI)eq,3.a3] / l

where (EI)eq,i represents the equivalent stiffness of the three re-
gions in the figure [1]. In each of the regions, the equivalent stiff-
ness should be calculated using the equation (2), using the values 
X1, M and X2, respectively, for Ma.
In order to determine the inertia moment for the cracked section 
III in the equation (2), elastic and linear behavior was admitted for 
the steel and concrete being compressed, while disregarding the 
concrete tension (figure [2]).
The section should initially be homogenized, using the following 
relationship between the steel and concrete elasticity modulus:

3. Equivalent stiffness according  
 to the Branson formula [1]

In the case of reinforced concrete beams, different amounts of 
reinforcement and the variable distribution of cracking along 
the span mean that stiffness against EI bending will not be 
constant.
According to NBR 6118:2007 [2], verification of rotations and dis-
placements in linear structural elements must be performed using 
models that take into account the effective stiffness of the cross 
sections of the elements, taking into consideration the presence 
of reinforcement, the cracking of the concrete along this reinforce-
ment and the strains over time.
Branson [1] presents an empirical expression in order to determine 
the effective stiffness in any particular cross section of a beam. 
This effective stiffness is a function of the bending moment, the 
section’s properties and the concrete strength.
The equivalent stiffness produced by Branson’s formula [1], 
which has been adopted by NBR 6118:2007 [2], for an approxi-
mate assessment of the immediate deflection in beams may be 
written as follows:

(2)
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where:
- Ecs is the secant concrete elasticity modulus, arrived at using:

(3)Ecs = 0.85 Eci 

with Eci defined by the equation (1);
- Ic is the inertia moment for the gross section of concrete;
- III is the inertia moment for the cracked section of concrete in 
state II;
- Ma is the bending moment in the critical section of the span being 
considered, the maximum moment in the span for beams with two 

Figure 1 – Obtaining of the pondered 
equivalent stiffness for continuous beams
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(6)αe = Es / Ecs 

Next, the depth of the neutral axis in state II, xII, was obtained, 
equalizing the static moment of the area above the neutral axis 
(Qsup) with the area below (Qinf). Thus, we have:

(7)Qsup = Qinf  

(8)[(b.xII).xII/2 –  A’s.(xII  –  d’)] + αe.A’s.(xII  –  d’) = αe.As.(d – xII)

(9)(b.xII).xII/2 + (αe  –  1).A’s.(xII  –  d’) = αe.As.(d –  xII)

Replacing

(10) α’e = αe – 1 

in equation (9), the following second degree equation in xII is obtained:

(11) (b/2).xII
2  + (αe.As  + α’e.A’s).xII  –  (αe.As.d + α’e.A’s d’) = 0

which results in:

(12) xII = – A + (A2 + B)½ 

with

(13) A = (αe.As + α’e.A’s)/b 

(14)B = 2.(αe.As.d + α’e.A’s d’)/b 

For the inertia moment for cracked section III, the result is:

(15)III  = (b/3).xII
3  + α’e.A’s.(xII  –  d’)2  + αe.As.(d –  xII)

2

It is important to mention that the equation (2) should only be uti-
lized when the bending moment Ma is equal to or in excess of the 
cracking moment Mr, or that is, when Mr/Ma ≤ 1 (state II). When Mr/
Ma > 1, the structure is already in state I and, therefore, the stiff-
ness of gross section EcsIc must be utilized.  
Supposing, for example, that Mr/Ma = 0.5, the equation (2) is:

(16) (EI)eq = Ecs.{(0.5)3.Ic + [1 – (0.5)3].III} 

(17) (EI)eq = Ecs.(0.125.Ic + 0.875.III) 

Note that, in this case, the equivalent stiffness (EI)eq is determined, 
predominantly, by the stiffness of the cracked section (EI)II, with the 
contribution from the stiffness corresponding to the section of gross 
concrete being greatly reduced. It is common, therefore, for Ma/Mr 
relationships in excess of 2 to adopt an approximation of (EI)eq equal 
to(EI)II.

4. Numeric applications

In this paper, various plane frames belonging to regular reinforced 
concrete buildings (the typical stories used in these buildings can 
be found in Oliveira [6]) are analyzed using the finite element meth-
od utilizing ANSYS 9.0 software. Table [1] summarizes the main 
characteristics of the examples studied.    
Initially, linear elastic analyses of the buildings were performed utiliz-
ing three-dimensional models. The load acting on the structures was 
divided into two groups: the vertical load and the horizontal load.
The vertical load is composed of permanent loads and of the ac-
cidental load. The permanent loads considered were the weight 
of the structure itself, masonry loads and the slab coatings and 
finishings.
The horizontal load is constituted of the loads equivalent to the 
action of the wind, in the directions parallel to the X and Y axes. 
The drag forces were calculated in accordance with the NBR 
6123:1988 [7] Brazilian Norm and the ultimate normal combina-
tions followed the rules established in NBR 6118:2007 [2].
The reinforcement of the columns and beams that constituted the 
frames being studied was determined based on the envelope of 
the efforts obtained for each load combination. The beams were 
dimensioned to combined axial load and bending and the columns 
to combined axial load and bending or to combined axial load and 
biaxial bending. CA-50 steel was used for all the structural ele-
ments, with an elasticity modulus equal to 210 GPa. 
The plane frames were then processed considering both the geo-
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metric and physical nonlinearities. The load parcel corresponding 
to the combination that considered the wind (which acts parallel to 
the X or Y axes, depending on the direction of the frame analyzed) 
was applied as the main variable action. The wind load amounts 
that the frames received were calculated in function of their lateral 
stiffness values. 
Within the diverse constitutive nonlinear models offered by AN-
SYS, two stand out as being more appropriate for representing the 
behavior of concrete: the elastoplastic model based on the Druck-
er-Prager yield criterion and the specific model for the determina-
tion of the failure of brittle materials, obtained using the Willam-
Warnke criterion. For the steel, one can choose from between the 
bilinear or multilinear models, cinematic or isotropic, with or without 
hardening, according to the Von Mises yield criterion.
The utilization of the model based on the Willam-Warnke failure 
criterion is limited to a single element, defined as “solid 65”. This 
is a solid three-dimensional element, with eight nodes and three 
degrees of freedom per node (three translations, in the X, Y and 
Z directions). It is possible to consider the brittle failure associated 
with cracking and crushing of the concrete, also admitting consid-
eration of elastoplastic behavior based on Drucker-Prager and Von 
Mises criteria. There is a possibility of including the reinforcement 
as a smeared material in the interior of the element, oriented ac-
cording to three different directions.   
 In this example the “solid 65” element with smeared reinforcement 
(in three directions) was utilized in order to represent the columns 
and beams. The Willam-Warnke criterion allows for the failure con-
dition to be deactivated and replaced with a plastification condition, 
utilizing, for example, the Drucker-Prager or Von Mises criteria. In 
the analysis performed, the Willam-Warnke failure criterion was 
maintained for concrete tension and the Von Mises yield criterion 
was employed for concrete compression and for the steel. It is im-
portant to mention that the Von Mises criterion present, both for 
concrete and for steel, perfect elastoplastic behavior according to 
bilinear stress-strain diagrams. In reality, with the goal of avoiding 
possible numerical difficulties, minimum hardening was considered 
and a small value was adopted for the tangent modulus in place 
of zero. It should be noted that the parameters utilized in the non-
linear analyses (materials models, discretization adopted and nu-
meric resources involved) were “calibrated” based on various stud-
ies of structural components and reinforced concrete frames that 
had already been tested experimentally, as was done by Oliveira 
& Silva [8] and Oliveira [6]. Such studies have revealed the prox-

imity between the experimental results and those obtained from 
the nonlinear geometric and physical analyses performed using 
ANSYS, which are therefore considered capable of representing 
the actual behavior of structures with a good degree of precision.   
In order to perform the nonlinear analyses, ANSYS utilizes the 
Newton-Raphson incremental-iterative method. In this, the num-
ber of load increments and the number of iterations for each load 
step are supplied. Based on a known equilibrium configuration and 
on load increment data, the structure will respond with a force level 
below that applied, which results in a residual force that must be 
applied again, observing the admitted iteration and tolerance lim-
its. In this manner, the stiffness matrix may or may not be updated 
with each iteration, depending on the option desired by the user. 
Utilized in these processes were the full Newton-Raphson algo-
rithm, automatic load increments and a limit of 60 iterations per 
increment, with a tolerance of 0.1% applied to the square root of 
the sum of the squares of force imbalances.
Nonlinear geometric analyses of the frames were also performed, 
considering the approximated physical nonlinearity, by means of a 
reduction in the stiffness of the structural elements. In the case of 
the columns, the stiffness was reduced by 20% and, for the beams, 
inertia reduction values were used in accordance with the Branson 
formula [1] and those recommended in NBR 6118:2007 [2].
Thus, the following values for the effective inertia of the structural 
elements were adopted:
• Icl = 0.8 Ic and Ibm = 0.4 Ic;
• Icl = 0.8 Ic and Ibm = 0.5 Ic;
• Icl = 0.8 Ic and Ibm = Ieq arrived at using equation (2), or that is:

(18) 
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In this case, the equivalent inertia values pondered were determined 
using various applied load percentages (P). In this manner, the per-
formance of the Branson inertia equivalent [1] used to consider the 
physical nonlinearity of the beams in simple form could be assessed 
for the loads corresponding to the ultimate limit state (defined as 
100% P), the service limit state (considered to be approximately 
equal to 45% P) and for the unfactored loading (75% P). 
In order to conduct the nonlinear geometric analyses of the 
frames using the ANSYS-9.0 software, the columns and beams 

Table 1 – Main characteristics of the examples studied 

Example Number  
of stories  

Story height  
(m) 

Number  
of spans  

Span length  
(m) 

fck 
(MPa) 

1 16 2.90 2 6.0 20 
2 20 Variable 3 Variable 40 
3 20 2.75 4 Variable 45 
4 30 2.85 2 7.5 20 
5 16 2.88 2 6.0 25 
6 15 2.90 3 4.2 25 
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were represented using the bar elements, with three degrees of 
freedom in each node: two translations in the X and Y directions 
and one rotation about the Z axis. It is important to mention 
that, in the solid model, the beam spans are measured between 
the column faces, which makes it more rigid than the model for 
the bars, in which the spans are considered as extending from 
support axis to support axis. This difference creates a need to 
utilize the element defined as “beam 54” to represent the ex-
tremities of the beams in the bar model. This element allows 
for the introduction of offsets in the beam-column joint region, 
making them rigid. As a result, it is possible to compare the two 
models under equal conditions. It is worth noting that, in or-
der to determine the lengths of the rigid regions to be adopted, 
comparative analyses (linear elastic) were performed between 
the solid model and the bar model that utilizes offsets. Figure 
[3] presents the graph of the applied load versus horizontal dis-
placement of the top of the frame in example 1 for the linear 
elastic analysis performed with the solid model and with the bar 
models (with and without offsets). It was observed that the bar 
model without offsets is really much more flexible than the solid 
model; this, in turn, is much better represented by the bar model 
that utilizes offsets. 
Graphs were created that show the variation in horizontal dis-
placement of the tops of the frames with the load applied, for 

Figure 3 – Load-displacement relationship for 
the linear elastic analysis performed 
with the solid model and with the bar 

models (frame in example 1)
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nonlinear geometric and physical analyses (NLGPA) and non-
linear geometric analyses, with a simplified representation of 
the physical nonlinearity (NLGA – SIMP. PNL). The graphs 
for the frames in examples 2, 3 and 4 are presented in figures 
[4], [5] and [6] (the other graphs, corresponding to examples 

1, 5 and 6 can be found in Oliveira [6]). Based on the analysis 
of the load x displacement graphs, it was possible to visual-
ize the reduction in inertia that better describes the behavior of 
the frames studied, considering the unfactored loading and the 
load that correspond to the ultimate limit and service limit states 
(table [2]).
Note that in table [2], in the service limit state, the analyses per-
formed with Icl = 0.8 Ic and Ibm = Ieq according to Branson [1] and 
Icl = 0.8 Ic and Ibm = 0.5 Ic were shown to be more appropriate for 
representing the behavior of 83% and 67% of the frames studied, 
respectively. Therefore, for this load intensity, the analysis that uti-
lizes reductions in inertia equal to 0.8 Ic for the columns and Ieq 
according to Branson [1] for the beams may be considered the 
most efficient.
Also in table [2], it was observed that, for the unfactored load-
ing and that corresponding to the ultimate limit state, in the 
majority of the examples analyzed, the utilization of the in-
ertia reduction values adopted in NBR 6118:2007 [2] for the 
more general cases, or that is, Icl = 0.8 Ic and Ibm = 0.4 Ic, 
produced the results that best approximated those obtained 
through the nonlinear geometric and physical analysis. It was 
also observed that for only examples 2 and 6 the analysis per-
formed using Icl = 0.8 Ic and Ibm = Ieq according to Branson 
[1] represented the greatest degree of precision for the “ac-
tual” behavior of the structures. It is worth mentioning that the 
frames in example 2 and 6, among all the frames analyzed, 
were the most flexible, as can be seen in the graphs in figures 
[7] and [8]. In these graphs, the load x displacement curves for 
the frames that present similar heights are confronted. Thus, 
figure [7] represents the variation in horizontal displacement 
at the tops of the frames in examples 2 and 3 with the load 
applied for the nonlinear geometric and physical analyses (NL-
GPA) and nonlinear geometric analyses that utilize Icl = 0.8 Ic 

Figure 6 – Load-displacement relationship for 
the nonlinear analyses (frame in example 4)

Table 2 – Inertia reduction that better describes the behavior of the frames studied

Example Load corresponding to 
the service limit state (45% P) 

Unfactored loading 
(75% P) 

Load corresponding to the 
ultimate limit state (100% P) 

1 I  = 0.8 I   I  = 0.5 Icl c bm cand     I Iandcl bm = 0.8 I    = 0.4 Ic c     I I. and .cl bm = 0 8 I    = 0 4 Ic c     

2
 I Iandcl bm = 0.8 I    = Ic eq     

according to Branson [1] 
I Iandcl bm = 0.8 I    = Ic eq     

according to Branson [1] 
I I. andcl bm = 0 8 I    = Ic eq     

according to Branson [1] 

3
       I Iandcl bm = 0.8 I    = Ic eq

according to Branson [1]
I I. and .cl bm = 0 8 I    = 0 4 Ic c

    
I I. and .cl bm = 0 8 I    = 0 4 Ic c

     

4
       

  

     

I I. and .cl bm = 0 8 I    = 0 4 Ic c
    

 
 

I I. and .cl bm = 0 8 I    = 0 4 Ic c
     

5       
  

I I. and .cl bm = 0 8 I    = 0 4 Ic c    
 
 

I I. .cl bm = 0 8 I  e  = 0 4 Ic c     

6
 

I I. and .cl bm = 0 8 I    = 0 4 Ic c

    
 

I I. and .cl bm = 0 8 I    = 0 5 Ic c

    
I I. andcl bm = 0 8 I    = Ic eq

according to Branson [1]

I I.cl bm = 0 8 I  e  = Ic eq     
according to Branson [1] 

I  = 0.8 I  and I  = I  cl c bm eq

according to Branson [1] 
I  = 0.8  and I  = 0.5 Icl Ic bm c

I  = 0.8 I  and I  = I  cl c bm eq

according to Branson [1] 
I  = 0.8 I  and I  = 0.5 Icl c bm c

I  = 0.8 I  and I  = I  cl c bm eq

according to Branson [1] 
I  = 0.8 I  and I  = 0.5 Icl c bm c
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and Ibm = Ieq according to Branson [1]. Analogously, figure [8] 
presents the variation in horizontal displacement of the tops of 
the frames in examples 5 and 6 with the load applied, also for 
the nonlinear geometric and physical analyses (NLGPA) and 
nonlinear geometric analyses that utilize Icl = 0.8 Ic and Ibm = Ieq 
according to Branson [1]. 
In an analysis of the graphs in figures [7] and [8], it can be seen 
that, in fact, the utilization of inertia values equal to Icl = 0.8 Ic and 
Ibm = Ieq according to Branson [1] is much more efficient for the rep-
resentation of the behavior of the more flexible frames in examples 
2 and 6 than for the stiffer frames in examples 3 and 5. This is cer-
tainly due to the Branson inertia equivalent formula [1] itself, which 
consists of a ponderation of the inertias in the gross concrete sec-
tion (state I) and cracked concrete section (state II). The greater 
the Ma/Mr relationship, the greater is the contribution from inertia in 
the cracked section III. In the event the moment Ma is smaller than 
the cracking moment Mr, the inertia from the gross section of con-
crete Ic is adopted for Branson’s inertia equivalent [1].
The frames in examples 2 and 6 present beams with lower inertia 
and have cracking moments Mr that are greatly inferior to those 
of the frames in examples 3 and 5, as is shown in table [3]. This 
means that the moments Ma will surpass the cracking moments 
Mr much more quickly for the frames in examples 2 and 6 than for 
the frames in examples 3 and 5; in the latter, therefore, Branson’s 
inertia equivalent [1] approximates the inertia for the gross section 
of concrete, even for greater load intensities, which may result in 
values that do not translate the actual loss of stiffness in the struc-
ture. In the case of the frames in examples 2 and 6, based on the 
lower load values, the equivalent inertia shall be determined, in 

large part, by the inertia for the cracked section III, which is coher-
ent for structures with less stiffness and, therefore, with a greater 
cracking intensity.
It should be mentioned that, considering the small load intensities, 
from which the structures had not yet cracked, the analyses per-
formed using Icl = 0.8 Ic and Ibm = Ieq according to Branson [1] rep-
resent a good degree of precision regarding the behavior of all the 
frames, both the more flexible ones and the stiffer ones (figures [7] 
and [8]). This is predictable, since, for the small load values P, the 
bending moments Ma are inferior to the cracking moment Mr and, 
consequently, the inertia value for the gross section of concrete Ic 
is adopted for Branson’s inertia equivalent [1].

5. Final considerations

This paper attempts to evaluate the efficiency of Branson’s inertia 
equivalent [1] to consider the physical nonlinearity of beams in 
simple form. To this end, various numerical analyses of plane 
frames belonging to regular reinforced concrete buildings were 
performed utilizing ANSYS software. Initially, the frames were 
processed considering both the geometric and physical non-
linearities. Next, nonlinear geometric analyses were performed 
considering an approximated physical nonlinearity, by means 
of a reduction in the stiffness of the structural elements. In the 
case of the columns, the stiffness was reduced by 20% and, for 
the beams, the inertia reduction values according to the Branson 
formula [1] and those recommended in NBR 6118:2007 [2] were 
utilized. The results of the nonlinear geometric analyses, con-
sidering the simplified physical nonlinearity, were then compared 

Figure 8 – Load-displacement relationship 
for the frames in examples 5 and 6

Figure 7 – Load-displacement relationship
for the frames in examples 2 and 3
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Table 3 – Cracking moments of beams 
of the frames in examples 2, 3, 5 and 6

Example •Cracking moment M  (kN  cm)r    
2 2625 
3 6840 
5 6370 
6 2080 

with those obtained using the nonlinear geometric and physical 
analyses, which are capable of representing the actual behavior 
of structures with greater precision.
The performance of the nonlinear geometric analyses, considering 
the simplified physical nonlinearity, was evaluated for the loads 
corresponding to the ultimate limit state (defined as 100% P), the 
service limit state (considered approximately equal to 45% P) and 
for the unfactored loading (75% P).
In the service limit state, the analysis that utilizes inertia reductions 
equal to 0.8 Ic for the columns and Ieq according to Branson [1] for 
the beams may be considered the most efficient.
For the unfactored loading and the one corresponding to the ulti-
mate limit state, the majority of the examples analyzed, the utiliza-
tion of the inertia reduction values adopted in NBR 6118:2007 [2] 
for the more general cases, or that is, Icl = 0.8 Ic and Ibm = 0.4 Ic, 
produced the closest results to those obtained through the nonlin-
ear geometric and physical analysis.
It is worth mentioning that the utilization of values equal to Icl = 0.8 
Ic and Ibm = Ieq according to Branson [1] was shown to be more effi-
cient for representing the behavior of the more flexible frames than 
for the stiffer frames. This is certainly due to the Branson inertia 
equivalent formula [1] itself, which for the stiffer frames, approxi-
mates the inertia of the gross concrete section, even for greater 
load intensities, and may result in values that do not translate the 
actual loss of stiffness in the structure. In the case of the more flex-
ible frames, based on the lower load values, the inertia equivalent 
shall be determined, in large part, by the inertia of the cracked 
section III, which is coherent for the structures with smaller stiffness 
values and, thus, with greater cracking intensity.
It was also noted that, for small load intensities, under which the 
structures had not yet cracked, the analyses performed using  
Icl = 0.8 Ic and Ibm = Ieq according to Branson [1] represented the 
behavior of all the frames, both the more flexible ones and the 
stiffer ones, with a good degree of precision. This can be ex-
plained by remembering that, for small load values, the bending 
moments Ma are lower than the cracking moment Mr and, con-
sequently, the inertia values for the gross section of concrete Ic 
is adopted for the Branson inertia equivalent [1].
Finally, starting with the principle that the stiffness reduction coef-
ficients for the structural elements are normally aimed at normal 
building projects, generally dimensioned for the load correspond-
ing to the ultimate limit state, one may consider the inertia reduc-
tions as being equal to 0.8 Ic for the columns and 0.4 Ic for the 
beams as being the most representative of the behavior of the 
frames analyzed. It should also be noted that the utilization of a 
constant coefficient for all the beams results in a simpler procedure 

that is practical and easy to employ and is extremely advantageous 
compared with the utilization of the Branson inertia equivalent [1], 
which represents different values for each span and for each story 
of the building structure.
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