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Abstract  

Resumo

The reinforcement design of concrete cross-sections with the parabola-rectangle diagram is a well-established model. A global limit analysis, 
considering geometrical and material nonlinear behavior, demands a constitutive relationship that better describes concrete behavior. The Sargin 
curve from the CEB-FIP model code, which is defined from the modulus of elasticity at the origin and the peak point, represents the descending 
branch of the stress-strain relationship. This research presents a numerical method for the reinforcement design of concrete cross-sections based 
on the arc length process. This method is numerically efficient in the descending branch of the Sargin curve, where other processes present con-
vergence problems. The examples discuss the reinforcement design of concrete sections based on the parabola-rectangle diagram and the Sargin 
curve using the design parameters of the local and global models, respectively.

Keywords: reinforced concrete, design of concrete cross-sections, Sargin curve, arc-length method.

O dimensionamento de seções transversais de concreto com o diagrama parábola-retângulo é um modelo de cálculo consagrado. A análise 
limite global, considerando a não linearidade física e geométrica, demanda uma relação constitutiva que descreva melhor o comportamento 
do concreto. A curva de Sargin do Código Modelo CEB-FIP, que é definida a partir do módulo de elasticidade na origem e do ponto de pico, re-
presenta o ramo descendente da relação tensão-deformação. Esta pesquisa apresenta um método numérico de dimensionamento de seções 
transversais baseado no processo do arco-cilíndrico. Este método é numericamente eficiente no ramo descendente da curva de Sargin, onde 
outros processos mostram problemas de convergência. Os exemplos discutem o dimensionamento de seções transversais com o diagrama 
parábola-retângulo e a curva de Sargin, utilizando os parâmetros de cálculo dos modelos local e global, respectivamente.

Palavras-chave: concreto armado, dimensionamento de seções de concreto, curva de Sargin, processo do arco-cilíndrico.
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1. Introduction

Different constitutive relations have been used for the reinforcement 
design of concrete beams and columns. Mörsch [1] considered 
linear-elastic material behavior in allowable stress design. Several 
authors contributed to the flexural model that is nowadays used in 
ultimate limit state design. In the 1950s, Bernoulli’s plane section hy-
pothesis, equilibrium conditions, and nonlinear constitutive relation-
ships for concrete and steel provided the basis for the development 
of reinforcement design theories. The literature review on concrete 
stress distribution presented by Hognestad [2] includes the contri-
butions of Whitney [3] and Bittner [4] for rectangular and parabola-
rectangle diagrams, respectively.
Simplified theories for ultimate strength under combined bending 
and normal force were consolidated in the early 1960s using ap-
proximate constitutive relations for concrete without any significant 
loss of precision. Mattock, Kriz, and Hognestad [5] adopted the 
rectangular diagram, while Rüsch, Grasser, and Rao [6] used the 
parabola-rectangle diagram.
Concrete stress distribution is currently approximated by a rectan-
gular stress block in ACI 318-14 [7]. CEN Eurocode 2: 2004 [8], FIB 
Model Code 2010 [9], and ABNT NBR 6118: 2014 [10] all use the 
parabola-rectangle diagram.
Such simplified stress diagrams require limiting strain states for re-
inforcing steel and concrete to ensure valid results under combined 
axial and bending effects. The approximated diagrams simplify nu-
merical design procedures and design graphs, but do not represent 
the characteristics of concrete, such as the initial modulus of elastic-
ity and the descending branch of the stress-strain relationship.
Physical and geometric nonlinear analyses of reinforced concrete 
framed structures require stress-strain relationships that better de-
scribe the behavior of concrete. The Sargin model [11] represents 
several characteristics of the uniaxial behavior of concrete. The Sar-
gin curve presented in the CEB-FIP Model Code 1990 [12] is defined 
by the initial modulus of elasticity, minimum compression stress, and 
critical strain. This curve also represents the descending branch of 
the stress-strain relationship.
The convergence of the Newton-Raphson method is not stable in 
descending branches of stress-strain curves. This study presents a 
numerical method for the reinforcement design of concrete sections 
under combined bending and normal forces that is suitable for the 
Sargin curve. It is based on the arc-length technique, which is stable 
for negative derivatives of the stress-strain diagram. The numeri-
cal procedure automatically identifies the strain distribution in the 
ultimate limit state without having to consider a variable strain limit 
in compression (domain 5). Concrete and steel strain limits are not 
required but can be included to avoid excessive deformations.
The examples given of reinforcement design apply both the parab-
ola-rectangle and the Sargin curve. Design stress-strain diagrams 
are based on characteristic curves and code provisions for local and 
global analysis.

2. Simplifying assumptions

The following assumptions are considered at the outset:
1. There is no relative displacement between the steel and the sur-

rounding concrete (steel and concrete have the same mean strain). 

2. Cross-sections remain plane after deformation (Bernoulli’s  
hypothesis).

In the interests of simplifying the formulation, steel area is not de-
ducted from concrete area. The influence of the type of aggregate 
is not discussed in the present investigation.

3. Constitutive relations

Compression stresses and strains are negative.
The constitutive stress-strain relationship of steel is defined by 

(1)

where steel stress σs is a function of steel strain εs. The yield 
strength and modulus of elasticity of the steel are fy and Es, respec-
tively. The corresponding yield strain εsy is:   

(2)

The steel stress-strain curve is divided into three regions  
(Figure 1), which are respectively defined by:

(3)

The convergence of the Newton-Raphson process in the yielding 
range is stabilized by the reduced tangent modulus Ks Es. The arc-
length method uses Ks=0. The steel tangent modulus Es (εs) is de-
fined by the derivative:

(4)

Expressions  and  yield:

(5)

Concrete stress σc is a function of concrete strain εc, i.e.,

(6)

Figure 1
Stress-strain relationship of steel
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CEB-FIP Model Code 1990 [12] defines the Sargin curve from 
the minimum compression stress σc1, the critical strain εc1, and 
the initial modulus of elasticity Ec0 (Figure 2). Concrete stress is 
defined by:

(7)

where εc lim is the strain that separates the first two branches 
of the curve. The secant modulus of elasticity Ec1 at the critical 
point is:

(8)

Coefficient k1 , variable η, and strain limit εc lim are respectively de-
fined by:

(9) 
 

(10)
 

(11)

where

(12) 

(13)

Parameters b and c of equation (7) are respectively expressed by:

(14) 

(15)

where

(16)

The tangent modulus of elasticity of concrete, Ec (εc), is defined by 
the derivative:

(17)

Expressions  and  yield: 

(18)

The initial modulus of elasticity can be ascertained from equations  
and , i.e.,

(19)

The provisions of item 5.8.6 from CEN Eurocode 2:2004 [8] are 
also considered. The critical strain and initial elasticity modulus 
are, respectively,

(20) 

(21)

The partial factor for the elasticity modulus of concrete is γcE =1.2 
and the effect of the aggregate type is not discussed in this investi-
gation. The mean compressive strength of the concrete is estimat-
ed by fcm = fck + 8 MPa, where fck is the characteristic compressive 
strength of concrete. 
The partial safety factors for concrete and steel are γc = 1.4 and 
γs=1.15, respectively, as recommended in ABNT NBR 6118:2014 
[10]. The effect of long-term sustained loads on the ultimate strength 
of concrete (Rüsch [13]) is considered by using αc = 0.85 in:

(22)

The reinforcement design examples apply both the Sargin and 
the parabola-rectangle curve. The reinforcement design with the 
parabola-rectangle diagram assumes the constitutive relation, the 
limit strains, and the ultimate limit-state domains provided in ABNT 
NBR 6118:2014 [10].
The numerical procedure proposed for the Sargin curve auto-
matically identifies the strain distribution in the ultimate limit state 
without having to consider a variable strain limit in compression 
(domain 5). Concrete and steel strain limits are not required, but 
they are included to avoid excessive deformations. Steel strain is 
limited by:

(23)

Concrete strain is limited by:

(24)

CEN Eurocode 2:2004 [8] provides the following expression:

(25)Figure 2
Stress-strain relationship of concrete
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Since εc u1 > εc lim (Figure 2), the branch of the Sargin curve defined 
by εc ≤ εc lim is not used in the reinforcement design.

4. Equilibrium and compatibility equations

Figure 3 shows the coordinate system of the cross-section. The 
concrete section is discretized into area elements dAc. The position 
of each element centroid is defined by the coordinates yc and zc. 
The position of each steel reinforcing bar, whose area is denoted 
as As, is defined by the coordinates ys and zs (Figure 4). The stress 
resultants are presented in Figure 5. Positive normal forces Nx are 
tension forces. Positive bending moments My and Mz correspond to 

tension stresses at the positive y and z faces, respectively. 
According to assumption 1, there is no slip between the steel and 
the surrounding concrete. Concrete and steel strains, which are 
respectively denoted as εc and εs, have the same value, i.e.,

(26)

where ε is the strain at a point in the cross-section. 
Cross-sections remain plane after deformation (assumption 2). 
Strain ε at a point is expressed as:

(27)

where kx is the strain at the origin. Parameters ky and kz are the curva-
tures with inverted signs. The compatibility equation (27) is rewritten as:

(28)

where  p=[1 y z]T  is a position vector and  k=[kx ky kz]T  is the gen-
eralized strain vector.
The following expressions are obtained from the equilibrium condi-
tions of the cross section: 

(29)
 

(30) 

(31)

The equilibrium equations (29), (30), and (31) are rewritten as:

(32)

where σ(ε) is the stress at a point and S = [Nx My Mz]T is the stress 
resultant vector. The following incremental equation is obtained 
from (32):

Figure 3
Cross-section

Figure 4
Steel reinforcing bars

Figure 5
Stress resultants
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(33)

E(ε) is the tangent modulus of elasticity at a point. The substitution 
of (28) into (33) yields:

(34)

where the tangent matrix E is expressed by:

(35)

5. Numerical methods for section 
 analysis and reinforcement design

Figure 6 shows the solution for a nonlinear structural system of a 
single degree of freedom based on the Newton-Raphson process. 
The arc-length process is a variant of the Newton-Raphson method 
that controls the progress of the iterative process (Figure 7). The 
arc-length and load factor are denoted as l and λ, respectively. The 
incremental process is capable of passing through critical points.

The section analysis and reinforcement design methods are appli-
cable, but not limited, to the Sargin stress-strain relationship.

5.1 Arc-length method

The arc-length method presented by Crisfield [14] is an alternative 
formulation of the method originally proposed by Riks [15]. 
The stress resultant vector is defined as , where  is a load 
factor and    is the stress resultant vector that is 
established as a reference. 
The term ΔSi is defined as: 

(36)

where Si = [Nx,i My,i Mz,i] is the stress resultant vector associated 
with the generalized strain vector ki = [kx,i ky,i kz,i]T at iteration i. 
Equation  is rewritten as:

(37)

where Ei is a tangent matrix and Dki is the increment of the general-
ized strain vector at iteration i. Equations (36) and (37) yield:

(38)

where

(39)
 

(40)

The arc-length l is expressed by:

(41)

The substitution of (38) into (41) yields:

(42)

Expression (42) defines the quadratic equation:

(43)

where

(44)

One of the roots of equation (43) corresponds to the factor λ of the 
next iteration. The appropriate root is discussed in the next item.

5.2 Section analysis

The parameters required for section analysis are the steel and 
concrete properties, the geometric characteristics of the cross-sec-
tion, the position and area of the reinforcing steel bars, the refer-
ence stress resultant vector , and the arc-length l. The maximum 
load factor  found throughout the incremental process defines the 
cross-section strength.
A brief summary of the iterative process is presented next.

I. Generalized strains ki at iteration i

Iteration i starts with vector ki. The first iteration can start with  
k1=0.

Figure 6
Newton-Raphson method

Figure 7
Arc-length method
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II. Generalized stresses Si and tangent matrix Ei  

The strains ε = pT ki, stresses σ(ε), and tangent moduli of elasticity 
E(ε) are determined for each area element of the steel and con-
crete. Expressions (32) and (35) yield the generalized stresses Si 
and tangent matrices Ei, respectively.

III. Load factors λA and λB

Equations (39) and (40) yield the auxiliary vectors  and , re-
spectively. Load factors λA and λB are the solutions of the quadratic 
equation established by (43) and (44).

IV. Load factor λ

The root of (43) that pushes forward the incremental process is 
selected. The first iteration elects λ1 = max (λA, λB). For iteration 
i>1, equation (38) yields:

(45) 

(46)

where ΔkA and ΔkB are the strain vector increments of roots λA and 
λB, respectively.
The slopes θA and θB of roots λA and λB are respectively defined as: 

(47) 

(48)

The load factor λ associated with the maximum slope θ = max (θA, θB) 
is selected. The corresponding increment ΔkA or ΔkB is denoted as 
Δki. The generalized strain vector ki+1 of the next iteration is: 

(49)

The procedure returns to step II to start a new iteration. The pro-
cess terminates when steel or concrete strains reach their limit val-
ues. Section strength is defined by , where  is the maximum 
load factor found throughout the incremental process.

5.3 Reinforcement design

The parameters required for reinforcement design are the steel 
and concrete properties, the geometric characteristics of the cross-
section, the position and relative area of each reinforcing steel bar, 
the minimum and maximum steel ratios, the reference stress resul-
tant vector S̅, and the arc-length l. The design stress resultants are 
defined by λd S̅, where λd is the corresponding load factor.
A brief summary of the iterative process is presented next.

I. Stress analysis for minimum reinforcement 

The procedure in item 5.2 yields the maximum load factor   
for the minimum reinforcement As min. If , the required 
reinforcement is As min and the process is terminated. Otherwise, 

 and As INF = As min.

II. Stress analysis for maximum reinforcement 

The procedure in item 5.2 yields the maximum load factor  λ
sA max  

for the maximum reinforcement  s maxA . If 
 

λ λ>
s maxd A , the cross-

section is not adequate and the process is terminated. Otherwise, 

 
λ λ=

s maxSUP A  and   =s SUP s maxA A .

III. Iterative process 

The required reinforcement is estimated by linear interpolation

(50)

The procedure in item 5.2 yields the maximum load factor  for 
As. If , the new limit is defined by  and As SUP = As. 
Otherwise,  and AS INF = As.
A new iteration restarts when As SUP - As INF >TOLd, where TOLd is the 
tolerance for the reinforcement design. The iterative process ends 
when As SUP - As INF ≤ TOLd. The required reinforcement is conserva-
tively assumed to be As SUP. This study considers TOLd = 1 × 10-7 m².

6. Examples and numerical results

The reinforcement design procedure based on the arc-length 
method is implemented in two Fortran programs, which use parab-
ola-rectangle and Sargin curves, respectively. Programs Fx4 and 
Fx5 are presented in Kabenjabu [16].
The typical rectangular cross-section is defined by by = 0.25  m and 
bz = 0.80  m (Figure 8). The rebar edge distances in y and z direc-
tions are d'y = 0.05 m and d'z = 0.05 m, respectively.
The concrete section is discretized in 25×80 area elements. The 
section is considered doubly reinforced in most examples, but it is 
also studied as singly reinforced for pure bending.
The characteristic yield strength of steel is fyk = 500MPa.  

Figure 8
Typical cross-sections with and without 
compression reinforcement



1264 IBRACON Structures and Materials Journal • 2018 • vol. 11 • nº 6

Reinforcement design of concrete sections based on the arc-length method

The examples investigate concrete grades C15, C30, and C45. 
The corresponding compressive strengths are 15 MPa, 30 MPa 
and 45MPa, respectively. Although C15 concrete is no longer in 
use, it is included in the study because of its widespread use in 
the past.
The partial safety factors for concrete and steel are γc = 1.4 and  
γs = 1.15, respectively, as recommended in ABNT NBR 6118:2014 
[10]. Nx, My, and Mz are the design values of the stress resultants. 
The examples are summarized in Tables 1 to 9, where As tot is the 
required total reinforcement, εc min is the minimum concrete strain, 

and εs max is the maximum steel strain. The relative difference  
ΔAs tot  ⁄ As tot is defined as:

(51)

where As tot,PAR-RECT and As tot,SARGIN are the required total reinforce-
ment for parabola-rectangle and Sargin curves, respectively.
The section is subjected to pure compression in Table 1. The Sargin 
curve yields lower reinforcement values than the parabola-rectan-
gle diagram. The limit strain εcu2 = -0.002 of the parabola-rectangle  

Table 1
Doubly-reinforced cross-section subjected to pure compression

Stress resultants Parabola-rectangle diagram Sargin curve Diff. Relative 
difference

Nx
(kN)

My
(kNm)

Mz
(kNm)

As tot
(cm²) εc min εs max

As tot
(cm²) εc min εs max

DAs tot
(cm²) DAstot/Astot

C15
-3000 0 0 28.0 -0.00200 -0.00200 27.2 -0.00207 -0.00207 -0.8 -2.9%
-4000 0 0 51.8 -0.00200 -0.00200 50.2 -0.00207 -0.00207 -1.6 -3.1%
-5000 0 0 75.6 -0.00200 -0.00200 73.2 -0.00207 -0.00207 -2.4 -3.2%

C30

-4000 0 0 8.5 -0.00200 -0.00200 8.2 -0.00216 -0.00216 -0.3 -3.4%
-4500 0 0 20.4 -0.00200 -0.00200 19.7 -0.00216 -0.00216 -0.7 -3.4%
-5000 0 0 32.3 -0.00200 -0.00200 31.2 -0.00216 -0.00216 -1.1 -3.4%
-5500 0 0 44.2 -0.00200 -0.00200 42.7 -0.00216 -0.00216 -1.5 -3.4%
-6000 0 0 56.1 -0.00200 -0.00200 54.2 -0.00216 -0.00216 -1.9 -3.4%
-6500 0 0 68.0 -0.00200 -0.00200 65.7 -0.00216 -0.00216 -2.3 -3.4%
-7000 0 0 79.9 -0.00200 -0.00200 77.2 -0.00216 -0.00216 -2.7 -3.4%

C45
-6000 0 0 12.7 -0.00200 -0.00200 12.3 -0.00240 -0.00240 -0.4 -3.3%
-7000 0 0 36.5 -0.00200 -0.00200 35.3 -0.00240 -0.00240 -1.2 -3.3%
-8000 0 0 60.3 -0.00200 -0.00200 58.3 -0.00240 -0.00240 -2.0 -3.3%

Table 2
Doubly-reinforced cross-section subjected to compression and uniaxial bending (ez = bz ⁄ 4) 

Stress resultants Parabola-rectangle diagram Sargin curve Diff. Relative 
difference

Nx
(kN)

My
(kNm)

Mz
(kNm)

As tot
(cm²) εc min εs max

As tot
(cm²) εc min εs max

DAs tot
(cm²) DAstot/Astot

C15

-1250 0 250 8.3 -0.00350 0.00077 8.4 -0.00295 0.00085 0.1 1.3%
-1750 0 350 24.4 -0.00350 0.00027 24.3 -0.00284 0.00034 0.0 0.0%
-2250 0 450 41.7 -0.00350 0.00005 41.6 -0.00275 0.00012 -0.1 -0.2%
-2750 0 550 59.4 -0.00345 -0.00008 59.2 -0.00270 -0.00001 -0.2 -0.3%
-3250 0 650 77.3 -0.00339 -0.00016 77.1 -0.00266 -0.00009 -0.2 -0.3%

C30

-2250 0 450 9.7 -0.00350 0.00103 10.7 -0.00318 0.00100 1.0 10.1%
-2500 0 500 16.6 -0.00350 0.00077 17.7 -0.00318 0.00077 1.1 6.5%
-2750 0 550 24.2 -0.00350 0.00059 25.3 -0.00317 0.00059 1.1 4.6%
-3000 0 600 32.1 -0.00350 0.00045 33.2 -0.00315 0.00046 1.1 3.6%
-3250 0 650 40.3 -0.00350 0.00035 41.5 -0.00313 0.00036 1.2 2.9%
-3500 0 700 48.7 -0.00350 0.00027 49.9 -0.00311 0.00028 1.2 2.4%
-3750 0 750 57.2 -0.00350 0.00020 58.4 -0.00309 0.00021 1.2 2.0%
-4000 0 800 65.9 -0.00351 0.00014 67.0 -0.00308 0.00015 1.2 1.8%

C45

-3250 0 650 11.4 -0.00350 0.00115 13.5 -0.00338 0.00105 2.1 18.2%
-3500 0 700 17.9 -0.00350 0.00093 20.2 -0.00339 0.00086 2.3 13.0%
-4000 0 800 32.4 -0.00350 0.00064 35.0 -0.00338 0.00059 2.7 8.2%
-4500 0 900 48.2 -0.00350 0.00045 51.0 -0.00336 0.00041 2.8 5.9%
-5000 0 1000 64.6 -0.00350 0.00032 67.6 -0.00334 0.00029 3.0 4.6%
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diagram is smaller in modulus than the design value of the yield strain 
of the steel (εsyd = 0.00207). Steel stresses are higher with the Sargin 
curve since they reach the yield point. The differences between the 
two models are small and less than 5% in required reinforcement. 
Tables 2 and 3 consider combined compression and uniaxial bend-
ing with eccentricities of ez = bz ⁄ 4 and ez = bz ⁄ 2, respectively, 
where ez = |Mz ⁄ Nx|. In Table 4, the section is subjected to com-

pression and biaxial bending with ey = by ⁄ 4 and ez = bz ⁄ 4, where  
ey = |My ⁄ Nx|. Table 5 discusses compression and biaxial bending 
with ey = by ⁄ 2 and ez = bz ⁄ 2. Tables 6 and 7 consider compression 
and uniaxial bending with ey = by ⁄ 4 and ey = by ⁄ 2, respectively. Ta-
ble 8 investigates pure bending with compression reinforcement. 
The relative differences are always less than 5% in Tables 3, 5, 7 
and 8. 

Table 3
Doubly-reinforced cross-section subjected to compression and uniaxial bending (ez = bz ⁄ 2) 

Stress resultants Parabola-rectangle diagram Sargin curve Diff. Relative 
difference

Nx
(kN)

My
(kNm)

Mz
(kNm)

As tot
(cm²) εc min εs max

As tot
(cm²) εc min εs max

DAs tot
(cm²) DAstot/Astot

C15

-750 0 300 8.3 -0.00350 0.00301 8.4 -0.00259 0.00244 0.1 0.7%
-1000 0 400 16.1 -0.00350 0.00170 15.9 -0.00350 0.00188 -0.3 -1.6%
-1250 0 500 26.7 -0.00351 0.00126 26.5 -0.00350 0.00140 -0.3 -1.0%
-1500 0 600 38.0 -0.00350 0.00101 37.8 -0.00344 0.00112 -0.3 -0.7%
-1750 0 700 49.7 -0.00350 0.00085 49.5 -0.00336 0.00094 -0.2 -0.5%
-2000 0 800 61.6 -0.00350 0.00075 61.3 -0.00329 0.00081 -0.2 -0.4%

C30

-1000 0 400 7.4 -0.00350 0.00634 7.6 -0.00287 0.00515 0.1 1.9%
-1250 0 500 11.6 -0.00350 0.00434 11.8 -0.00290 0.00355 0.2 1.9%
-1500 0 600 16.7 -0.00350 0.00301 17.0 -0.00291 0.00248 0.3 1.9%
-1750 0 700 22.7 -0.00350 0.00207 23.3 -0.00337 0.00207 0.6 2.7%
-2000 0 800 32.2 -0.00350 0.00170 32.8 -0.00350 0.00175 0.5 1.7%
-2250 0 900 42.6 -0.00350 0.00144 43.2 -0.00350 0.00149 0.6 1.5%
-2500 0 1000 53.4 -0.00351 0.00126 54.1 -0.00351 0.00130 0.7 1.3%
-2750 0 1100 64.6 -0.00350 0.00112 65.4 -0.00350 0.00116 0.7 1.1%

C45

-1500 0 600 11.1 -0.00350 0.00634 11.4 -0.00312 0.00532 0.3 2.8%
-2000 0 800 19.8 -0.00350 0.00384 20.3 -0.00312 0.00317 0.6 2.8%
-2500 0 1000 30.9 -0.00350 0.00235 31.8 -0.00331 0.00207 0.9 2.9%
-3000 0 1200 48.4 -0.00350 0.00170 50.3 -0.00350 0.00166 1.9 4.0%
-3500 0 1400 69.2 -0.00350 0.00137 71.4 -0.00351 0.00135 2.2 3.2%

Table 4
Doubly-reinforced cross-section subjected to compression and biaxial bending (ey = by ⁄4  and  ez = bz ⁄4) 

Stress resultants Parabola-rectangle diagram Sargin curve Diff. Relative 
difference

Nx
(kN)

My
(kNm)

Mz
(kNm)

As tot
(cm²) εc min εs max

As tot
(cm²) εc min εs max

DAs tot
(cm²) DAstot/Astot

C15

-850 53.125 170 9.3 -0.00350 0.00185 8.4 -0.00332 0.00207 -0.8 -9.0%
-1000 62.500 200 15.2 -0.00350 0.00158 13.9 -0.00350 0.00186 -1.3 -8.6%
-1250 78.125 250 26.4 -0.00350 0.00131 25.0 -0.00350 0.00152 -1.4 -5.4%
-1500 93.750 300 38.3 -0.00350 0.00115 36.8 -0.00350 0.00131 -1.4 -3.7%
-1750 109.375 350 50.5 -0.00350 0.00105 49.1 -0.00350 0.00118 -1.4 -2.7%
-2000 125.000 400 62.8 -0.00350 0.00098 61.5 -0.00350 0.00109 -1.3 -2.1%
-2250 140.625 450 75.3 -0.00350 0.00092 74.0 -0.00350 0.00102 -1.3 -1.7%

C30

-1500 93.750 300 11.8 -0.00350 0.00211 11.8 -0.00350 0.00229 0.0 0.2%
-1750 109.375 350 20.4 -0.00350 0.00180 19.8 -0.00350 0.00193 -0.6 -3.0%
-2000 125.000 400 30.5 -0.00350 0.00158 29.8 -0.00350 0.00170 -0.7 -2.4%
-2250 140.625 450 41.4 -0.00350 0.00143 40.6 -0.00350 0.00152 -0.7 -1.8%
-2500 156.250 500 52.8 -0.00350 0.00131 52.1 -0.00350 0.00140 -0.7 -1.4%
-2750 171.875 550 64.5 -0.00350 0.00122 63.8 -0.00350 0.00130 -0.7 -1.1%

C45

-2000 125.000 400 11.1 -0.00350 0.00243 11.9 -0.00350 0.00242 0.8 7.3%
-2250 140.625 450 17.6 -0.00350 0.00211 18.6 -0.00350 0.00210 1.0 5.4%
-2500 156.250 500 26.0 -0.00350 0.00189 27.1 -0.00350 0.00188 1.2 4.5%
-2750 171.875 550 35.5 -0.00350 0.00172 36.8 -0.00350 0.00171 1.3 3.7%
-3000 187.500 600 45.7 -0.00350 0.00158 47.2 -0.00350 0.00158 1.4 3.2%
-3250 203.125 650 56.5 -0.00350 0.00147 58.1 -0.00350 0.00147 1.6 2.8%
-3500 218.750 700 67.7 -0.00350 0.00139 69.3 -0.00350 0.00138 1.7 2.5%
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Table 5
Doubly-reinforced cross-section subjected to compression and biaxial bending (ey = by ⁄2  and  ez = bz ⁄2) 

Table 6
Doubly-reinforced cross-section subjected to compression and uniaxial bending (ey = by ⁄4)

Stress resultants Parabola-rectangle diagram Sargin curve Diff. Relative 
difference

Nx
(kN)

My
(kNm)

Mz
(kNm)

As tot
(cm²) εc min εs max

As tot
(cm²) εc min εs max

DAs tot
(cm²) DAstot/Astot

C15

-400 50 160 10.3 -0.00350 0.00364 9.8 -0.00350 0.00407 -0.5 -4.8%
-600 75 240 21.2 -0.00350 0.00268 20.6 -0.00350 0.00300 -0.6 -2.7%
-800 100 320 33.2 -0.00350 0.00216 32.7 -0.00337 0.00232 -0.5 -1.5%

-1000 125 400 47.6 -0.00350 0.00191 45.6 -0.00350 0.00205 -2.0 -4.3%
-1200 150 480 63.1 -0.00350 0.00177 61.0 -0.00350 0.00189 -2.1 -3.3%

C30

-600 75 240 11.7 -0.00350 0.00456 11.4 -0.00350 0.00477 -0.2 -2.0%
-800 100 320 20.7 -0.00350 0.00364 20.4 -0.00350 0.00381 -0.3 -1.4%

-1000 125 400 31.0 -0.00350 0.00308 30.8 -0.00350 0.00323 -0.3 -0.9%
-1200 150 480 42.3 -0.00350 0.00268 42.0 -0.00350 0.00281 -0.3 -0.6%
-1400 175 560 54.1 -0.00350 0.00239 53.9 -0.00350 0.00251 -0.2 -0.4%
-1600 200 640 66.3 -0.00350 0.00216 66.2 -0.00350 0.00226 -0.1 -0.2%

C45

-600 75 240 7.5 -0.00350 0.00634 7.6 -0.00350 0.00630 0.1 1.8%
-800 100 320 13.6 -0.00350 0.00500 13.9 -0.00350 0.00498 0.3 1.9%

-1000 125 400 21.7 -0.00350 0.00419 22.1 -0.00350 0.00417 0.4 1.8%
-1200 150 480 31.0 -0.00350 0.00364 31.5 -0.00350 0.00363 0.5 1.6%
-1400 175 560 41.2 -0.00350 0.00324 41.8 -0.00350 0.00323 0.6 1.4%
-1600 200 640 52.1 -0.00350 0.00293 52.8 -0.00350 0.00292 0.7 1.3%
-1800 225 720 63.5 -0.00350 0.00268 64.2 -0.00350 0.00267 0.8 1.2%

Stress resultants Parabola-rectangle diagram Sargin curve Diff. Relative 
difference

Nx
(kN)

My
(kNm)

Mz
(kNm)

As tot
(cm²) εc min εs max

As tot
(cm²) εc min εs max

DAs tot
(cm²) DAstot/Astot

C15

-1250 78.125 0 12.2 -0.00350 0.00048 12.3 -0.00286 0.00056 0.1 1.2%
-1500 93.750 0 22.0 -0.00350 0.00031 22.1 -0.00280 0.00037 0.1 0.3%
-1750 109.375 0 32.2 -0.00350 0.00021 32.2 -0.00277 0.00027 0.0 0.0%
-2000 125.000 0 42.5 -0.00350 0.00014 42.4 -0.00275 0.00020 -0.1 -0.1%
-2250 140.625 0 52.8 -0.00350 0.00010 52.8 -0.00274 0.00015 -0.1 -0.1%
-2500 156.250 0 63.3 -0.00350 0.00006 63.2 -0.00273 0.00011 -0.1 -0.2%
-2750 171.875 0 73.7 -0.00350 0.00004 73.6 -0.00272 0.00008 -0.1 -0.2%

C30

-2100 131.250 0 9.7 -0.00350 0.00075 11.0 -0.00304 0.00071 1.3 13.9%
-2250 140.625 0 15.0 -0.00350 0.00063 16.4 -0.00307 0.00061 1.4 9.3%
-2500 156.250 0 24.3 -0.00350 0.00048 25.7 -0.00308 0.00048 1.4 5.9%
-2750 171.875 0 34.1 -0.00350 0.00038 35.5 -0.00308 0.00039 1.4 4.2%
-3000 187.500 0 44.0 -0.00350 0.00031 45.5 -0.00307 0.00032 1.4 3.3%
-3250 203.125 0 54.1 -0.00350 0.00025 55.5 -0.00307 0.00026 1.4 2.6%
-3500 218.750 0 64.3 -0.00350 0.00021 65.8 -0.00306 0.00022 1.4 2.2%
-3750 234.375 0 74.6 -0.00350 0.00017 76.0 -0.00306 0.00019 1.4 1.9%

C45

-3000 187.500 0 9.6 -0.00350 0.00086 12.4 -0.00323 0.00074 2.8 28.7%
-3250 203.125 0 18.0 -0.00350 0.00069 21.1 -0.00327 0.00061 3.1 17.0%
-3500 218.750 0 27.1 -0.00350 0.00057 30.3 -0.00328 0.00051 3.2 11.9%
-3750 234.375 0 36.5 -0.00350 0.00048 39.8 -0.00329 0.00044 3.4 9.2%
-4000 250.000 0 46.2 -0.00350 0.00041 49.6 -0.00329 0.00038 3.4 7.4%
-4250 265.625 0 56.0 -0.00350 0.00036 59.5 -0.00329 0.00032 3.5 6.2%
-4500 281.250 0 66.0 -0.00350 0.00031 69.6 -0.00329 0.00028 3.5 5.3%
-4750 296.875 0 76.1 -0.00350 0.00027 79.7 -0.00329 0.00025 3.6 4.7%
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Table 8
Doubly-reinforced cross-section subjected to pure bending

Stress resultants Parabola-rectangle diagram Sargin curve Diff. Relative 
difference

Nx
(kN)

My
(kNm)

Mz
(kNm)

As tot
(cm²) εc min εs max

As tot
(cm²) εc min εs max

DAs tot
(cm²) DAstot/Astot

C15

0 0 150 9.7 -0.00147 0.01000 9.7 -0.00130 0.01001 0.0 -0.1%
0 0 300 19.7 -0.00189 0.01000 19.7 -0.00177 0.01000 0.0 0.2%
0 0 450 29.6 -0.00211 0.01001 29.7 -0.00202 0.01001 0.1 0.2%
0 0 600 39.5 -0.00225 0.01001 39.6 -0.00218 0.01000 0.1 0.2%
0 0 750 49.4 -0.00235 0.01000 49.5 -0.00229 0.01000 0.1 0.2%
0 0 900 59.3 -0.00242 0.01000 59.4 -0.00237 0.01001 0.1 0.2%
0 0 1050 69.2 -0.00247 0.01001 69.3 -0.00242 0.01001 0.1 0.2%

C30

0 0 150 9.6 -0.00109 0.01000 9.6 -0.00100 0.01000 0.0 -0.2%
0 0 300 19.5 -0.00147 0.01000 19.5 -0.00140 0.01000 0.0 0.0%
0 0 450 29.4 -0.00172 0.01000 29.4 -0.00166 0.01001 0.0 0.1%
0 0 600 39.3 -0.00189 0.01000 39.4 -0.00184 0.01001 0.0 0.1%
0 0 750 49.3 -0.00202 0.01000 49.3 -0.00197 0.01000 0.1 0.1%
0 0 900 59.2 -0.00211 0.01001 59.2 -0.00208 0.01000 0.1 0.1%
0 0 1050 69.1 -0.00219 0.01000 69.2 -0.00216 0.01001 0.1 0.1%

C45

0 0 150 9.5 -0.00090 0.01000 9.5 -0.00088 0.01000 0.0 0.0%
0 0 300 19.3 -0.00124 0.01001 19.3 -0.00123 0.01001 0.0 0.1%
0 0 450 29.2 -0.00147 0.01000 29.2 -0.00147 0.01001 0.0 0.1%
0 0 600 39.1 -0.00165 0.01000 39.2 -0.00165 0.01000 0.0 0.1%
0 0 750 49.1 -0.00178 0.01000 49.1 -0.00178 0.01000 0.0 0.1%
0 0 900 59.0 -0.00189 0.01000 59.0 -0.00189 0.01001 0.0 0.1%
0 0 1050 68.9 -0.00198 0.01000 69.0 -0.00198 0.01001 0.0 0.1%

Table 7
Doubly-reinforced cross-section subjected to compression and uniaxial bending (ey = by ⁄2)

Stress resultants Parabola-rectangle diagram Sargin curve Diff. Relative 
difference

Nx
(kN)

My
(kNm)

Mz
(kNm)

As tot
(cm²) εc min εs max

As tot
(cm²) εc min εs max

DAs tot
(cm²) DAstot/Astot

C15

-750 93.75 0 12.1 -0.00350 0.00214 12.6 -0.00344 0.00248 0.4 3.4%
-1000 125.00 0 24.9 -0.00350 0.00148 24.7 -0.00350 0.00161 -0.2 -0.9%
-1250 156.25 0 39.1 -0.00350 0.00120 38.9 -0.00350 0.00129 -0.2 -0.6%
-1500 187.50 0 53.8 -0.00350 0.00105 53.6 -0.00339 0.00111 -0.2 -0.5%
-1750 218.75 0 68.7 -0.00350 0.00095 68.5 -0.00344 0.00101 -0.2 -0.3%

C30

-1000 125.00 0 11.2 -0.00350 0.00471 11.7 -0.00307 0.00399 0.5 4.4%
-1250 156.25 0 17.1 -0.00350 0.00321 17.9 -0.00350 0.00327 0.8 4.5%
-1500 187.50 0 24.3 -0.00350 0.00214 25.0 -0.00332 0.00207 0.7 3.1%
-1750 218.75 0 36.4 -0.00350 0.00172 37.3 -0.00350 0.00175 0.9 2.4%
-2000 250.00 0 49.8 -0.00350 0.00148 50.7 -0.00350 0.00151 0.9 1.8%
-2250 281.25 0 63.9 -0.00350 0.00132 64.8 -0.00350 0.00135 1.0 1.5%
-2500 312.50 0 78.2 -0.00350 0.00120 79.2 -0.00350 0.00123 1.0 1.3%

C45

-1250 156.25 0 11.5 -0.00350 0.00620 12.1 -0.00310 0.00510 0.5 4.4%
-1500 187.50 0 16.8 -0.00350 0.00471 17.4 -0.00321 0.00397 0.7 4.1%
-1750 218.75 0 22.6 -0.00350 0.00365 23.4 -0.00340 0.00333 0.9 3.8%
-2000 250.00 0 28.9 -0.00350 0.00285 29.9 -0.00350 0.00271 1.0 3.5%
-2250 281.25 0 36.4 -0.00350 0.00214 38.2 -0.00350 0.00205 1.7 4.8%
-2500 312.50 0 48.2 -0.00350 0.00183 50.7 -0.00350 0.00178 2.4 5.0%
-2750 343.75 0 61.2 -0.00350 0.00163 63.8 -0.00350 0.00159 2.6 4.2%
-3000 375.00 0 74.7 -0.00350 0.00148 77.5 -0.00350 0.00145 2.8 3.7%
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The examples in Tables 2, 4, and 6, which consider combined 
compression and bending with smaller eccentricity, yield significant 
relative differences. A relative difference of -9.0% is found for C15 
concrete (Table 4). The negative sign means that the parabola-

rectangle diagram is more conservative. C30 and C45 concretes 
yield relative differences of 13.9% and 28.7%, respectively (Table 
6). The positive sign means that the Sargin curve requires more 
reinforcement. As the absolute differences for C15, C30 and C45 
are limited to -1.4 cm2, 1.4 cm2, and 3.6 cm2, respectively, the rela-
tive differences are relevant for low reinforcement ratios. 
Table 9 investigates reinforcement design in pure bending with-
out compression reinforcement. The concrete class is C30. This 
analysis demonstrates the good convergence of the proposed 
method even without any contribution from steel to the stiffness of 
the compressive block. The relative differences are less than 1% 
in the first examples, when the tension reinforcement reaches the 
yield point (εsmax ≥ 0.00207). In the last example, the relative differ-
ence is 5.7% and the reinforcement strain is below the yield point. 
ABNT NBR 6118:2014 [10] recommends compression reinforce-
ment in beams to avoid a neutral axis in domain 4. The comparison 
between the same examples with and without compression rein-
forcement (Tables 8 and 9) shows that this recommendation also 
improves the correspondence between the parabola-rectangle and 
Sargin results in pure bending.
Figure 9 examines an example for the Sargin curve in Table 2  
(ez = bz ⁄ 4, fck = 30MPa, and As total = 67.0 cm2). The modulus of the 
stress resultant vector |S| is plotted as a function of the modulus 
of the generalized strain vector |k|. The maximum strength value 
is obtained for |k|=0.00455, which corresponds to εc min = -0.00308,  

Table 9
Singly-reinforced cross-section subjected to pure bending

Stress resultants Parabola-rectangle diagram Sargin curve Diff. Relative 
difference

Nx
(kN)

My
(kNm)

Mz
(kNm)

As tot
(cm²) εc min εs max

As tot
(cm²) εc min εs max

DAs tot
(cm²) DAstot/Astot

C30

0 0 150 4.8 -0.00126 0.01001 4.8 -0.00113 0.01000 0.0 -0.2%
0 0 300 9.9 -0.00212 0.01000 9.9 -0.00199 0.01000 0.0 0.0%
0 0 450 15.3 -0.00317 0.01000 15.4 -0.00286 0.00920 0.0 0.2%
0 0 600 21.4 -0.00350 0.00710 21.5 -0.00286 0.00568 0.1 0.4%
0 0 750 28.2 -0.00350 0.00449 28.4 -0.00291 0.00366 0.2 0.6%
0 0 900 36.1 -0.00350 0.00271 36.4 -0.00281 0.00207 0.3 0.8%
0 0 1050 70.5 -0.00350 0.00135 74.6 -0.00350 0.00131 4.0 5.7%

Figure 9
Section under compression and uniaxial bending 
(ez = bz ⁄4, fck = 30 MPa and As tot = 67.0  cm2)

Figure 10
Pure bending without compression reinforcement (Mz = 1050 kNm) 
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Nx = -4000 kN, and Mz = 800 kNm. However, ultimate concrete strain 
is reached for |k|=0.00521, which corresponds to εc min = -0.0035,  
Nx = -3985 kN, and Mz = 797 kNm.
Figure 10 investigates an example in pure flexion without com-
pression reinforcement (Table 9, Mz = 1050  kNm). The resul-
tants of the compressive stresses in concrete are obtained by 
numerically integrating the parabola-rectangle and Sargin curves. 
The required reinforcements are As PAR-RECT = 70.54 cm² and  
As SARGIN = 74.56 cm², respectively. The corresponding level arms are  
zs PAR-RECT = 0.524 m and zs SARGIN = 0.510 m, respectively. Reinforc-
ing bars do not reach the yield point in either case. The parabola-
rectangle diagram and the Sargin curve yield σc topo = σc min and  
|σc top| < |σc min|, respectively, where σc top is the stress at the top of the 
section and σc min is the minimum compressive stress in the concrete. 
The concrete and steel force resultants are Rc = Rs = 2003.73 kN 
and Rc = Rs = 2057.53 kN for the parabola-rectangle and Sargin 
curves, respectively. 

7. Conclusion

The reinforcement design of concrete sections based on the parabo-
la-rectangle diagram is a practical and well-established model. How-
ever, the initial modulus of elasticity and plastic range of the parabola-
rectangle diagram do not represent the actual behavior of concrete.
Stress-strain relationships that better characterize concrete prop-
erties are needed for global limit analyses of concrete structures 
that consider their physical and geometric non-linear behavior. The 
Sargin curve is selected because it is a function of the peak point 
and initial modulus of elasticity and represents the descending 
branch of the stress-strain relationship.
This research proposes a numerical procedure for the reinforce-
ment design of concrete sections that uses an arc-length method 
and yields good convergence in the descending branch of the Sar-
gin curve, without having to consider the distributions of strain lim-
its around pivot C in domain 5. Strain limits for concrete and steel 
are not required, but they are included in order to avoid exces-
sive deformation. The parabola-rectangle and Sargin curves are 
considered by using the code provisions for cross-sections and 
global limit analyses, respectively. The reinforcement design using 
the parabola-rectangle diagram is based on the section model in 
ABNT NBR 6118: 2014 [10]. The Sargin curve is implemented ac-
cording to the global nonlinear model in CEN Eurocode 2: 2004 [8].
The examples consider characteristic concrete strength values 
of 15, 30, and 45 MPa. The typical 0.25 m × 0.85 m rectangular 
cross-section is subjected to several loading cases which include 
pure compression and pure bending. Eccentricities in each direc-
tion of 1/4 and 1/2 of the corresponding dimension are considered 
in uniaxial and biaxial bending.
The required reinforcement shows a good correspondence in pure 
compression, pure bending of doubly-reinforced cross-sections, 
and uniaxial and biaxial bending with the highest relative eccen-
tricity. The results also show good correspondence in pure bending 
of singly-reinforced cross-sections when reinforcing steel reaches 
the yield point. The comparison of the results shows that the use 
of compression reinforcement in beams to avoid the neutral axis in 
domain 4 also improves the correspondence between the results 
of the parabola-rectangle and Sargin curves.

More significant differences are observed in uniaxial and biaxial 
bending with the lowest relative eccentricity. The parabola-rectan-
gle diagram is more conservative for C15 concrete, which shows 
a relative difference of -9.0%. The Sargin curve yields more rein-
forcement for C30 and C45, which present relative differences of 
13.9% and 28.7%, respectively. The relative differences are higher 
for the lower reinforcement ratios, since the absolute differences 
are small and limited to -1.4 cm2, 1.4 cm2, and 3.6 cm2 for C15, 
C30, and C45, respectively.
Despite the good correspondence observed in most examples, 
the investigation shows that the results of the Sargin curve are 
not necessarily conservative when compared to the parabola-rect-
angle diagram. For this reason, a global limit analysis using the 
Sargin curve still requires the analysis of all cross-sections with the 
parabola-rectangle diagram. 
The proposed reinforcement design method is efficient, numerically 
robust, and capable of considering other stress-strain relationships 
with or without descending branches. The examples use local and 
global analysis parameters for the parabola-rectangle and Sargin 
curves, respectively. The validation of a single calculation model for 
section and global limit analyses could motivate future investigations.
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